I B. Tech I Semester Supplementary Examinations Sept. - 2014 MATHEMATICS-I

(Common to All Branches)

Time: 3 hours
Max. Marks: 70

> Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1. (i) Find the orthogonal trajectories of family of curves $r^{n}=a \sin n \theta$
(ii) Solve $\frac{d^{2} y}{d x^{2}}-4 y=x \sinh x$
(iii) Find the Laplace transform of $\left(\sqrt{t}-\frac{1}{\sqrt{t}}\right)^{3}$
(iv) Show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2 u \log u$, where $u=e^{x^{2}+y^{2}}$
(v) Solve $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z$
(vi) Solve $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial z}{\partial y}=x^{2}+y^{2}$
$[3+3+4+4+4+4]$

PART-B

2.(a) Solve $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$
(b) Solve $y\left(x y+2 x^{2} y^{3}\right) d x+x\left(x y-x^{2} y^{2}\right) d y=0$
3.(a) Solve $\left(D^{2}-1\right) y=x \sin 3 x+\cos x$
(b) A particle of mass m executes S.H.M in the line joining the points A and B, on a smooth table and is connected with these points by elastic strings whose tensions is equilibrium are each T. If l, l^{1} be the extensions of the string beyond their natural lengths, find the time of oscillation.
4.(a) Find the Laplace transform of $\frac{\cos a t-\cos b t}{t}+t$ sinat .
(b) Solve $\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t$, if $x(0)=1, x\left(\frac{\pi}{2}\right)=-1$
5.(a) Expand $e^{x} \log (1+y)$ in powers of x and y up to terms of third degree.
(b) In a plane triangle, find the maximum value of cosacosbcosc.
6.(a) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$
(b) Solve $q^{2}=z^{2} p^{2}\left(1-p^{2}\right)$.
7.(a) Solve the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ subject to the conditions $u(0, y)=u(l, y)=$ $u(x, 0)=0$ and $u(x, a)=\sin \frac{n \pi x}{l}$
(b) Solve the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ under the conditions $u(0, t)=0, u(l, t)=0 \forall t$;

$$
\begin{aligned}
u(x, 0)= & f(x) \text { and }\left(\frac{\partial u}{\partial t}\right)_{t=0}=g(x), 0<x<l . \\
& \text { WWW . MANARF SUGTTS.CO.IN }
\end{aligned}
$$

I B. Tech I Semester Supplementary Examinations Sept. - 2014 MATHEMATICS-I

(Common to All Branches)

Time: $\mathbf{3}$ hours
Max. Marks: 70

$$
\begin{aligned}
& \text { Question Paper Consists of Part-A and Part-B } \\
& \text { Answering the question in Part-A is Compulsory, } \\
& \text { Three Questions should be answered from Part-B } \\
& *_{* * * *}
\end{aligned}
$$

PART-A

1.(i) Find the orthogonal trajectories of the family of cardioids $r=a(1+\cos \theta)$
(ii) Solve the $\left(D^{2}-4 D+3\right) y=\sin 3 x \cos 2 x$
(iii) Find the Laplace transform of $\sinh 3 t \cos ^{2} t$
(iv) If $\mathrm{u}=\sin ^{-1} \frac{x}{y}+\tan ^{-1} \frac{x}{y}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0$
(v) Solve $\frac{y^{2} z}{x} p+x z q=y^{2}$
(vi) Solve $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial z}{\partial y}-z=e^{-x}$
$[3+3+4+4+4+4]$

PART-B

2.(a) Solve $\left(y-x y^{2}\right) d x-\left(x+x^{2} y\right) d y=0$
(b) Solve $\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y$
3.(a) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \sin x$
(b) An unchanged condenser of capacity C is charged by applying an e.m.f. $E \sin \frac{t}{\sqrt{L C}}$, through leads of self-inductance L and negligible resistance. Prove that at any time t, the charge on One of the plates is $\frac{E C}{2}\left\{\sin \frac{t}{\sqrt{L C}}-\frac{t}{\sqrt{L C}} \cos \frac{t}{\sqrt{L C}}\right\}$
4.(a) Evaluate $L\left\{t \int_{0}^{t} \frac{e^{-t}}{t} \sin t d t\right\}$
(b) Find the inverse Laplace transform of $\log \left(\frac{s+1}{s-1}\right)$
5.(a) A rectangular box open at the top is to have volume of 32 cube ft . Find the dimensions of The box requiring least material for its construction.
(b) Expand $f(x, y)=x^{y}$ in powers of ($\mathrm{x}-1$) and ($\mathrm{y}-1$)
6.(a) Solve $p \sqrt{x}+q \sqrt{y}=\sqrt{z}$
(b) Solve $(x+y)(p+q)^{2}+(x-y)(p-q)^{2}=1$
7.(a) Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, o)=6 e^{-3 x}$
(b) A tightly stretched string of length 1 , with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $\vartheta_{0} \sin ^{3} \frac{\pi x}{l}$. Find the displacement $\mathrm{y}(\mathrm{x}, \mathrm{t})$.

I B. Tech I Semester Supplementary Examinations Sept. - 2014 MATHEMATICS-I

(Common to All Branches)

Time: $\mathbf{3}$ hours
Max. Marks: 70

> Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B $* * * * *$

PART-A

1.(i) Find the orthogonal trajectories of the family of parabolas $y^{2}=4 a x$
(ii) Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d x}{d y}+y=e^{2 x}-\cos ^{2} x$
(iii) Find the Laplace transform of $e^{-1} \sin ^{2} t$
(iv) If $\sin u=\frac{x^{2} y^{2}}{x^{2}+y^{2}}$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=3$ tanu
(v) Solve $x p-y q=y^{2}-x^{2}$
(vi) Solve $4 \frac{\partial^{2} z}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=16 \log (x+2 y)$

PART-B

2.(a) Solve $\sec ^{2} y \frac{d y}{d x}+x \tan y=x^{3}$
(b) A body is originally at $80^{\circ} c$ cools down to $60^{\circ} c$ in 20 minutes, the temperature of the air being $40^{\circ} \mathrm{c}$. What will be the temperature of the body after 40 minutes from the original.
3.(a) Solve $\left(D^{2}+1\right)^{2} y=x^{4}+2 \sin x \cos 3 x$
(b) Solve $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$.
4.(a) Find the Laplace transform of $t e^{-t} \sin 3 t$.
(b) Apply convolution theorem to evaluate $L^{-1}\left\{\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}\right\}$
5.(a) Expand $x^{2} y+3 y-2$ in powers of $(x-1)$ and (y+2) using Taylors theorem.
(b) Discuss the maxima and minima of $(x, y)=x^{3} y^{2}(1-x-y)$.
6.(a) Solve the partial differential equation $\mathrm{px}+\mathrm{qy}=1$
(b) Solve $2 z+p^{2}+q y+2 y^{2}=0$
7.(a) Using the method of separation of variables, solve $p y^{3}+q x^{2}=0$
(b) Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ with boundary conditions $u(x, 0)=3 \sin n \pi x, u(0, t)=0$ and $u(1, t)=0$, where $0<x<1, t>0$.

I B. Tech I Semester Supplementary Examinations Sept. - 2014 MATHEMATICS-I

(Common to All Branches)

Time: $\mathbf{3}$ hours
Max. Marks: 70

> Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B
> $* * * * *$

PART-A

1.(i) Find the orthogonal trajectories of the family of cardioids $r=2 a(\cos \theta+\sin \theta)$
(ii) Solve $\left(D^{2}+1\right) y=x^{4}+2 \sin x \cos 3 x$
(iii) Find the inverse Laplace transform $\frac{s^{2}}{(s-2)^{3}}$
(iv) Show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2 u \log u$, where $\log u=\frac{\left(x^{3}+y^{3}\right)}{(3 x+4 y)}$
(v) Solve $\left(y^{2}+z^{2}\right) p-x y q+z x=0$
(vi) Solve $\frac{\partial^{3} z}{\partial x^{3}}-3 \frac{\partial^{3} z}{\partial x^{2} \partial y}+\frac{\partial^{3} z}{\partial y^{3}}=e^{x+2 y}$
$[4+4+3+3+4+4]$

PART-B

2.(a) Solve $\left(y-x y^{2}\right) d x-\left(x+x^{2} y\right) d y=0$
(b) Solve $y\left(x y+2 x^{2} y^{3}\right) d x+x\left(x y-x^{2} y^{2}\right) d y=0$
3.(a) Solve $\left(D^{2}+1\right)^{2} y=x^{4}+2 \sin x \cos 3 x$
(b) Solve $\left(D^{4}+D^{2}+1\right) y=e^{-x / 2} \cos \frac{\sqrt{3}}{2} x$.
4.(a) Solve $\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t$, if $x(0)=1, x\left(\frac{\pi}{2}\right)=-1$
(b) Find the Laplace transform of $t e^{-t} \sin 3 t$.
5.(a) A rectangular box open at the top is to have volume of 32 cube ft . Find the dimensions of The box requiring least material for its construction.
(b) In a plane triangle, find the maximum value of cosacosbcosc.
6.(a) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$
(b) Solve $2 z+p^{2}+q y+2 y^{2}=0$
7.(a) Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, o)=6 e^{-3 x}$.
(b) Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ with boundary conditions $u(x, 0)=3 \sin n \pi x, u(0, t)=0$ and $u(1, t)=0$, where $0<x<1, t>0$.

