I B. Tech I Semester Supplementary Examinations Sept. - 2014

MATHEMATICS-I

(Common to All Branches)

Max. Marks: 70

Time: 3 hours

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

1. (i) Find the orthogonal trajectories of family of curves $r^n = a sinn\theta$

(ii) Solve
$$\frac{d^2y}{dx^2} - 4y = x \sinh x$$

Subject Code: R13102/R13

- (iii) Find the Laplace transform of $(\sqrt{t} \frac{1}{\sqrt{t}})^3$
- (iv) Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2ulogu$, where $u = e^{x^2 + y^2}$
- (v) Solve $(x^2 y^2 z^2)p + 2xyq = 2xz$
- (vi) Solve $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial y} = x^2 + y^2$

[8+8]

[8+8]

[8+8]

[8+8]

PART-B

2.(a) Solve
$$xy(1 + xy^2)\frac{dy}{dx} = 1$$

(b) Solve $y(xy + 2x^2y^3)dx + x(xy - x^2y^2)dy = 0$

- 3.(a) Solve $(D^2 1)y = x \sin 3x + \cos x$
 - (b) A particle of mass m executes S.H.M in the line joining the points A and B, on a smooth table and is connected with these points by elastic strings whose tensions is equilibrium are each T. If l, l^1 be the extensions of the string beyond their natural lengths, find the time of oscillation.

4.(a) Find the Laplace transform of
$$\frac{cosat-cosbt}{t} + tsinat$$
.
(b) Solve $\frac{d^2x}{dt^2} + 9x = cos2t$, if $x(0) = 1$, $x\left(\frac{\pi}{2}\right) = -1$

- 5.(a) Expand $e^x \log(1+y)$ in powers of x and y up to terms of third degree.
- (b) In a plane triangle, find the maximum value of *cosacosbcosc*.

[8+8]

6.(a) Solve
$$x^2(y-z)p + y^2(z-x)q = z^2(x-y)$$

(b) Solve $q^2 = z^2p^2(1-p^2)$.

7.(a) Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to the conditions u(0, y) = u(l, y) = u(x, 0) = 0 and $u(x, a) = \sin \frac{n\pi x}{l}$

(b) Solve the wave equation
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 under the conditions $u(0, t) = 0, u(l, t) = 0 \forall t;$
 $u(x, 0) = f(x) \text{ and } (\frac{\partial u}{\partial t})_{t=0} = g(x), 0 < x < l.$
WWW . MANARESULTS . CO. IN [8+8]

|"|"|||"|"||||

I B. Tech I Semester Supplementary Examinations Sept. - 2014

MATHEMATICS-I

(Common to All Branches)

Max. Marks: 70

[3+3+4+4+4+4]

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B** *****

PART-A

- 1.(i) Find the orthogonal trajectories of the family of cardioids $r = a(1 + cos\theta)$
 - (ii) Solve the $(D^2 4D + 3)y = sin3xcos2x$
 - (iii) Find the Laplace transform of $sinh3tcos^2t$
 - (iv) If $u = \sin^{-1}\frac{x}{y} + \tan^{-1}\frac{x}{y}$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$

(v) Solve
$$\frac{y^2}{r}p + xzq = y^2$$

Subject Code: R13102/R13

Time: 3 hours

(vi) Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial y} - z = e^{-x}$

PART-B

2.(a) Solve
$$(y - xy^2)dx - (x + x^2y)dy = 0$$

(b) Solve
$$\frac{dy}{dx} + xsin2y = x^3cos^2y$$

3.(a) Solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x sinx$$

(b) An unchanged condenser of capacity C is charged by applying an e.m.f. $Esin\frac{t}{\sqrt{LC}}$, through leads of self-inductance L and negligible resistance. Prove that at any time t, the charge on One of the plates is $\frac{EC}{2} \left\{ sin\frac{t}{\sqrt{LC}} - \frac{t}{\sqrt{LC}} cos\frac{t}{\sqrt{LC}} \right\}$

4.(a) Evaluate
$$L\left\{t\int_0^t \frac{e^{-t}}{t}sint dt\right\}$$

(b) Find the inverse Laplace transform of $\log\left(\frac{s+1}{s-1}\right)$

[8+8]

[8+8]

[8+8]

[8+8]

5.(a) A rectangular box open at the top is to have volume of 32 cube ft. Find the dimensions of The box requiring least material for its construction.

(b) Expand $f(x, y) = x^y$ in powers of (x-1) and (y-1)

WWW.MANARESULTS.CO.IN

|"|"|||"|"|||||

Subject Code: R13102/R13

- 6.(a)
- Solve $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$ Solve $(x + y)(p + q)^2 + (x y)(p q)^2 = 1$ (b)
- 7.(a)
- Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$ where $u(x, o) = 6e^{-3x}$ A tightly stretched string of length l, with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $\vartheta_0 \sin^3 \frac{\pi x}{l}$. Find the displacement y(x,t). (b)

[8+8]

[8+8]

Page 2 of 2 WWW.MANARESULTS.CO.IN

1"1"111"1"1111

I B. Tech I Semester Supplementary Examinations Sept. - 2014

MATHEMATICS-I (Common to All Branches)

Max. Marks: 70

Question Paper Consists of Part-A and Part-B Answering the question in **Part-A** is Compulsory, Three Questions should be answered from Part-B ****

PART-A

- Find the orthogonal trajectories of the family of parabolas $y^2 = 4ax$ 1.(i)
 - (ii) Solve $\frac{d^2y}{dx^2} + 2\frac{dx}{dy} + y = e^{2x} \cos^2 x$

Subject Code: R13102/R13

Time: 3 hours

- (iii) Find the Laplace transform of $e^{-1}sin^2t$
- (iv) If $sinu = \frac{\hat{x}^2 y^2}{x^2 + y^2}$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3tanu$
- (v) Solve $xp yq = y^2 x^2$ (vi) Solve $4\frac{\partial^2 z}{\partial x^2} - 4\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 16\log(x+2y)$

[4+4+3+3+4+4]

PART-B

- Solve $sec^2 y \frac{dy}{dx} + xtany = x^3$ 2.(a)
 - A body is originally at $80^{\circ}c$ cools down to $60^{\circ}c$ in 20 minutes, the temperature of the air (b) being $40^{\circ}c$. What will be the temperature of the body after 40 minutes from the original.
- Solve $(D^2 + 1)^2 y = x^4 + 2sinxcos3x$ 3.(a)

(b) Solve
$$\frac{d^2y}{dx^2} + a^2y = secax$$
.

- Find the Laplace transform of $te^{-t}sin3t$. 4.(a)
 - Apply convolution theorem to evaluate $L^{-1}\left\{\frac{s^2}{(s^2+a^2)(s^2+h^2)}\right\}$ (b)
- Expand $x^2y + 3y 2$ in powers of (x-1) and (y+2) using Taylors theorem. 5.(a)

Discuss the maxima and minima of $(x, y) = x^3y^2(1 - x - y)$. (b)

- Solve the partial differential equation px+qy=16.(a) Solve $2z + p^2 + qy + 2y^2 = 0$ (b)
- Using the method of separation of variables, solve $py^3 + qx^2 = 0$ 7.(a)
 - Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions $u(x, 0) = 3sinn\pi x$, u(0, t) = 0(b) and u(1, t) = 0, where 0 < x < 1, t > 0.

Page 1 of 1 WWW.MANARESULTS.CO.IN

1"1"111"1"1111

[8+8]

[8+8]

[8+8]

[8+8]

[8+8]

- [8+8]

I B. Tech I Semester Supplementary Examinations Sept. - 2014

MATHEMATICS-I (Common to All Branches)

Time: 3 hours

Subject Code: R13102/R13

Max. Marks: 70

[4+4+3+3+4+4]

[8+8]

[8+8]

[8+8]

Question Paper Consists of Part-A and Part-B Answering the question in **Part-A** is Compulsory, Three Questions should be answered from Part-B ****

PART-A

- Find the orthogonal trajectories of the family of cardioids $r = 2a(\cos\theta + \sin\theta)$ 1.(i)
 - Solve $(D^2 + 1)y = x^4 + 2sinxcos3x$ (ii)
 - (iii) Find the inverse Laplace transform $\frac{s^2}{(s-2)^3}$
 - (iv) Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u \log u$, where $\log u = \frac{(x^3 + y^3)}{(3x + 4y)}$
 - (v) Solve $(y^2 + z^2)p xyq + zx = 0$ (vi) Solve $\frac{\partial^3 z}{\partial x^3} - 3 \frac{\partial^3 z}{\partial x^2 \partial y} + \frac{\partial^3 z}{\partial y^3} = e^{x+2y}$

PART-B

2.(a) Solve
$$(y - xy^2)dx - (x + x^2y)dy = 0$$

(b) Solve $y(xy + 2x^2y^3)dx + x(xy - x^2y^2)dy = 0$

- 3.(a) Solve $(D^2 + 1)^2 y = x^4 + 2sinxcos3x$
 - (b) Solve $(D^4 + D^2 + 1)y = e^{-x/2} cos \frac{\sqrt{3}}{2}x$. [8+8]
- 4.(a) Solve $\frac{d^2x}{dt^2} + 9x = \cos 2t$, if $x(0) = 1, x\left(\frac{\pi}{2}\right) = -1$
 - Find the Laplace transform of $te^{-t}sin3t$. (b)
- 5.(a) A rectangular box open at the top is to have volume of 32 cube ft. Find the dimensions of The box requiring least material for its construction.
 - (b) In a plane triangle, find the maximum value of *cosacosbcosc*.
- [8+8] Solve $x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$ Solve $2z + p^{2} + qy + 2y^{2} = 0$ 6.(a) (b) [8+8]

Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x, o) = 6e^{-3x}$. 7.(a)

(b) Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions $u(x, 0) = 3sinn\pi x$, u(0, t) = 0and u(1, t) = 0, where 0 < x < 1, t > 0.

Page 1 of 1 WWW.MANARESULTS.CO.IN

1"1"111"1"1111