I B. Tech I Semester Supplementary Examinations, Oct/Nov - 2018 MATHEMATICS-I

(Com. to all branches)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A

1. a) Find the orthogonal trajectory of family of curves $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$, where ' a ' is the parameter.
b) Solve the differential equations
$\frac{d^{2} x}{d t^{2}}+x=0$, given that $x(0)=2, x\left(\frac{\pi}{2}\right)=-2$
c) Solve $\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial z}{\partial y}+2 z$ by the method of separation of variables.
d) if $\mathrm{x}=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$, evaluate $J=\frac{\partial(x, y)}{\partial(r, \theta)}$ and $J^{1}=\frac{\partial(r, \theta)}{\partial(x, y)}$
e) Show that the function $f(t)=t^{3}$ is of exponential order and find its Laplace transform.
f) Form the partial differential equation by eliminating arbitrary constants from the $z=a x+a^{2} y^{2}+b$

PART -B

2. a) Solve the D.E $r \sin \theta-\cos \theta \frac{d r}{d \theta}=r^{2}$
b) The temperature of a cup of coffee is $92^{\circ} \mathrm{C}$, when freshly poured the room (8 M) temperature being $24^{\circ} \mathrm{C}$. In one minute it was cooled to $80^{\circ} \mathrm{C}$. How long a period must elapse, before the temperature of the cup becomes $65^{\circ} \mathrm{C}$.?
3. a) Solve the D.E $\left(D^{2}-4\right) y=x \sinh x+54 x+8$
b) Solve the D.E $\left(D^{3}-3 D^{2}+4\right) y=\left(1+e^{-x}\right)^{3}$
4. a) Find $L\left\{\frac{t^{n-1}}{1-e^{-t}}\right\}$
b) Find $L^{-1}\left\{\log \left(\frac{s+1}{s-1}\right)\right\}$

WWW. MANAREastuLTS.CO.IN
|"|"'||"||"'|||||
5. a) Find the maximum and minimum distance of the point $(3,4,12)$ from the Sphere $x^{2}+y^{2}+z^{2}=1 \quad$ using Lagrange's function.
b) Expand $\log \left(1+e^{x}\right)$ by Maclaurn's series. Hence deduce that

$$
\begin{equation*}
\frac{e^{x}}{1+e^{x}}=\frac{1}{2}+\frac{x}{4}-\frac{x^{3}}{48}+\ldots \tag{8M}
\end{equation*}
$$

6. a) Find complete and singular solutions of the $z=p x+q y+2 \sqrt{p q}$
b) Solve the PDE $2 x z p+2 y z q=z^{2}-x^{2}-y^{2}$
7. A bar of 50 cm long with insulated sides kept at $0^{\circ} \mathrm{C}$ and that the other end is kept at (16 M) $100^{\circ} \mathrm{C}$ until steady state conditions prevail. The two ends are suddenly insulated so that the temperature is zero at each end thereafter. Find the temperature distribution.
