

I B. Tech I Semester Supplementary Examinations, Nov/Dec - 2017 MATHEMATICS-I

Time: 3 hours	(Comm. to All Branches)	Max. Marks: 70	
	Note: 1. Question Paper consists of two parts (Part-A and Part-B)		
	2. Answer ALL the question in Part-A		
	3 Answer any THREE Questions from Part-B		

PART -A

1.	a)	Solve $ydx - xdy = a(x^2 + y^2)dx$.	(4M)

- b) Find the Particulat integral of $(D^2 + 4D + 5)y = x^2$. (4M)
- c) Find the Laplace transform of $u(t-2)e^t$. (3M)
- d) Determine whether the following functions $u = e^x \sin y, v = e^x \cos y$ are (3M) functionally dependent or not.
- e) Form the partial differential equation by eliminating arbitrary constants a and b (4M) from $z = (x-a)^2 + (y-b)^2 + 1$.
- f) Write the one dimensional wave equation with necessary conditions. (4M)

PART -B

2. a) Solve
$$(x+2y^3)\frac{dy}{dx} = y.$$
 (8M)

b) If 30% of a radioactive substance vanished in 10 days. How long will it take for (8M) 90% of it to vanish?

3. a) Solve
$$(D^2 + 1)y = e^{-x} + e^x Cosx.$$
 (8M)

b) In an L-C-R circuit, the charge q on a plate of a condenser is given by
$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = ESinpt$$
(8M)

The circuit is tuned to resonance so that $q^2=1/LC$. If initially q=0, i=0 and $CR^2 < 4L$. Find charge q.

- 4. a) Evaluate $\int_{0}^{\infty} e^{-2t} \frac{1 \cos t}{t} dt$ (8M)
 - b) Solve $(D^2 4D 12)y = e^{3t}$ given that y(0) = 1 and $y^1(0) = -2$ using Laplace (8M) transforms.

WWW.MANARESULTS.CO.IN

|"|""||"|||

5. a) If
$$u = \frac{yz}{x}$$
, $v = \frac{xz}{y}$, $w = \frac{xy}{z}$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ (8M)

b) Find the minimum value of
$$x^2 + y^2 + z^2$$
 given $x + y + z = 3a$. (8M)

6. a) Form the partial differential equation by eliminating the arbitrary function *f* from (8M) $xyz = f(x^2 + y^2 + z^2).$

b) Solve
$$y^2 p - xyq = x(z - 2y)$$
 (8M)

7. Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to the conditions u(0, y) = 0, (16M) $u(10, y) = 0, u(x, \infty) = 0$ and $u(x, 0) = \begin{cases} 20x & \text{for } 0 \le x \le 5\\ 20(10-x) & \text{for } 5 \le x \le 10 \end{cases}$ where $y \ge 0$ and $0 \le x \le 10$.

 $2 \ of \ 2$

WWW.MANARESULTS.CO.IN

|"|"||"||