I B. Tech I Semester Supplementary Examinations, November - 2020 MATHEMATICS-I

(Com. to all branches)
Time: 3 hours
Max. Marks: 70
Note: 1. Question paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any THREE Questions from Part-B

PART -A

1. a) A Find the orthogonal trajectories of $r=a(1-\cos \theta)$.
b) Solve the differential equations.
$y^{11}-2 y^{1}+10 y=0$, Given $y(0)=4$, y1 $(0)=1$.
c) Solve $4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=3 u$ and $u(0, y)=e^{-5 y}$ by the method of separation of variables.
d) Expand $\log \sin x$ in powers of $(x-3)$ using Taylor's series method.
e) Find inverse Laplace transform of $\frac{6 s-5}{s^{2}+7}$
f) From the partial differential equation by eliminating arbitrary constants from the $z=a x y$

PART -B

2. a) Solve the D.E $\left(x^{2}+y^{2}+x\right) d x+x y d y=0$.
b) If air is maintained at $20^{\circ} \mathrm{C}$ and temperature of the body cools from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 10 minutes. Find the temperature of the body after 30 minutes.
3. a) Solve the D.E $\left(D^{2}-4 D+4\right) y=x^{2} \sin x+e^{2 x}+3$
b) Solve the D.E $\left(D^{2}+1\right) y=x^{2} \cosh x$
4. a) $\operatorname{If} L\{f(t)\}=\log \left(\frac{s+3}{s+1}\right)$ then $\operatorname{find}(\mathrm{i}) L\{f(2 t)\}$ (ii) $L\left\{e^{3 t} f(2 t)\right\}$
b) Find $L^{-1}\left\{\frac{s}{\left(s^{2}+\omega^{2}\right)^{2}}\right\}$ Using convolution theorem.
5. a) Prove that the functions $u=x^{2} e^{-y} \operatorname{coshz}, v=x^{2} e^{-y} \sinh z$ and $w=3 x^{4} e^{-2 y}$ are functionally dependent and hence find the relation between them.
b) Find extreme values of the function $f(x, y)=\cos x+\cos y+\cos (x+y)$
6. a) Find complete and singular solutions of the $z=p x+q y+\frac{p}{q}-p$.
b) Solve the $\operatorname{PDE} z(x-y)=p x^{2}-q y^{2}$
7. A tightly stretched with fixed end points $x=0, x=l$ is initially at rest in its equilibrium position. If it is vibrating by giving to each of its points a velocity $\lambda x(l-x)$. Find the displacement of the string at any distance x from one end a long time t .
