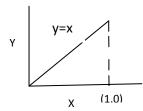
Set No - 1

I B. Tech I Semester Regular Examinations Jan./Feb. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS)


(Common to ECE, EEE, EIE, Bio-Tech, ECom E and Agri.E)

Time: 3 hours Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

- 1.(a) Write iterative scheme to find the *fourth root* of 11.
 - (b) Find $\Delta \log f(x)$.
 - (c) Given y' = x + y, y(0) = 1, find the value of y (0.4) (take h = 0.2) using Euler's method.
 - (d) Find the Fourier series of the periodic function with period '1'

- (e) If F_p is complex Fourier transform of f(x), then find the complex Fourier transform of $f(x)\sin ax$.
- (f) Prove that $Z(\sinh nt) = \frac{z \sinh t}{z^2 2z \cosh t + 1}$.

[4+3+4+4+4]

PART – B

- 2.(a) Using Regulae falsi method, find the real root correct to three decimal places of the equation $xe^x 2 = 0$.
 - (b) Find f(2.5) using Newton's forward formulae for the following data:

X	0	1	2	3	4	5
У	0	1	15	75	225	615

[8+8]

- 3.(a) If the interval of differencing is $\frac{1}{2}$ find $\Delta^2 \sin(px + q)$
 - (b) Find a real root of $x + \log_{10} x 2 = 0$ using Newton Raphson method.

[8+8]

- 4.(a) Solve $y^1 = x y^2$, y(0) = 1 by using Taylor's series method and compute y(0.1).
 - (b) Find Half range fourier cosine series of f(x) = x in the range $0 < x < 2\pi$ and hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

[8+8]

- 5.(a) Obtain fourier series for the function $f(x) = x \sin x$, $0 < x < 2\pi$.
 - (b) Solve $y^1 = y x$, y(0) = 2 for x = 0.2 by using Runge-Kutta Method of fourth order.

[8+8]

WWW.MANARESULTS.CO.IN

Set No - 1

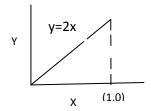
- 6.(a) Express $f(x) = \begin{cases} 1 & \text{; } for \ 0 \le x \le \pi \\ 0 & \text{; } for \ x > \pi \end{cases}$ as a Fourier integral and hence evaluate $\int_0^\infty \frac{1 cos\pi\lambda}{\lambda} \sin(\lambda x) \, d\lambda$
 - (b) Find inverse Z-transform of $\frac{Z}{(Z-1)(Z-2)}$.

[8+8]

- 7.(a) Solve the difference equation using Z-transform $y(n+2) 5y(n+1) + 6y(n) = 5^n$, given y(0) = 0, y(1) = 0.
 - (b) Find inverse fourier transform of $F(p) = e^{-|p|y}$.

Set No - 2

I B. Tech I Semester Regular Examinations Jan./Feb. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS)


(Common to ECE, EEE, EIE, Bio-Tech, ECom E and Agri.E)

Time: 3 hours Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

- 1.(a) Write iterative scheme to find the n^{th} root of a real number K(>0).
 - (b) Find $\Delta^2 \sin(px + q)$.
 - (c) Find the Fourier series of the periodic function with period '1'

- (d) If F_p is complex Fourier transform of f(x), then find the complex Fourier transform of f(x) cos ax.
- (e) Find the Z-transform of sin(n+1)x.
- (f) Using Euler's method, find the value of y(0.5) (take h = 0.25) and compare with the exact solution of the equation y' = x + y, y(0) = 1.

[3+3+4+4+4+4]

$\underline{PART-B}$

- 2.(a) Using Regula-Falsi Method, find the real root of, correct to three decimal places, the equation $\log x = \cos x$.
 - (b) Find y(1.91) using Gauss forward difference formula

X	1	2	3	4	5
у	5	14.5	14	13.25	12

[8+8]

- 3.(a) If $f(x) = e^{ax}$, Show that $\Delta^n f(x) = (e^{ah} 1)^n e^{ax}$.
 - (b) Find the root of $e^x x^3 + \cos 25x = 0$ near x = 4.5 (correct to three decimal places).

[8+8]

- 4.(a) Solve $y' = y x^2$, y(0) = 1 by Picard's method up to fourth approximation.
 - (b) Find a Fourier series to represent the function $f(x) = e^x$ in $-\pi < x < \pi$ and hence deduce a series for $\frac{\pi}{\sinh \pi}$

Set No - 2

5.(a) Find Half Range sine series of $f(x) = x(\pi - x)$ on $0 < x < \pi$ and deduce that

$$\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots = \frac{\pi^3}{32}$$

(b) Using Runge-Kutta method of 4^{th} order, compute y (1.1) for the equation $y' = 3x + y^2$, y(1) = 1.2.

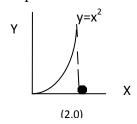
[8+8]

- 6.(a) Prove that Fourier transform of $(x^n f(x)) = (-i)^n \frac{d^n}{dp^n} [F(p)]$.
 - (b) Find $Z\left(\frac{1}{n(n+1)}\right)$.

[8+8]

- 7.(a) Solve the difference equation, using Z-transform y(n+2) + 3y(n+1) + 2y(n) = 0 given y(0) = 0, y(1) = 1.
 - (b) Find Fourier cosine transform of e^{-ax} , a > 0 and hence evaluate $\int_{0}^{\infty} \frac{\cos px}{a^2 + p^2} dp$.

I B. Tech I Semester Regular Examinations Jan./Feb. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS)


(Common to ECE, EEE, EIE, Bio-Tech, ECom E and Agri.E)

Time: 3 hours Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B**Answering the question in **Part-A** is Compulsory,
Three Questions should be answered from **Part-B*******

PART-A

- 1.(a) Write iterative scheme to find the root of the quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$.
 - (b) Prove that $E^{1/2} = \mu + \frac{1}{2}\delta$
 - (c) Find the Fourier series of the periodic function (of period 2) given by

- (d) If F_p is complex Fourier transform of f(x), then find the complex Fourier transform of $f(x) \sin ax$.
- (e) Given y' = x + y, y(0) = 1, find the value of y(0.4) using Picard's method up to second degree term.
- (f) Find the Z-transform of cos(n+1)x.

[3+3+4+4+4+4]

PART – B

- 2.(a) Using Regula Falsi method solve the equation $e^x \sin x = 1$.
 - (b) Using Lagrange's interpolation formula find y(10) from the data given below:

7	X	5	6	9	11
	y	12	13	14	15

[8+8]

- 3.(a) Prove that $\nabla \Delta = \Delta \nabla = \delta^2$.
 - (b) Find approximate root of the equation $x^3 8x 4 = 0$ near 3.

[8+8]

- 4.(a) Given $y^1 = \frac{y-x}{y+x}$, y(0) = 1 compute y(0.2) in steps of 0.1 using modified Euler's method.
 - (b) If f(x) = |x| expand f(x) as fourier series in the interval (-2,2).

Set No - 3

- 5.(a) If $f(x) = \begin{cases} x & \text{; if } 0 < x < \frac{\pi}{2} \\ \pi x & \text{; if } \frac{\pi}{2} < x < \pi \end{cases}$ Find Half range sine series of f(x).

 (b) Using Runge-Kutta method of fourth order, compute y(2.5) for the equation
 - $y^1 = \frac{x+y}{x}$, y(2) = 2.

- Find Fourier transform of $f(x) = e^{-|x|}$ and hence deduce that $\int_0^\infty \frac{\cos xt}{1+t^2} dt = \frac{\pi}{2} e^{-|x|}$. 6.(a)
 - (b) Evaluate $Z^{-1}\left[\frac{Z^2}{(Z-3)(Z-4)}\right]$

[8+8]

- 7.(a) Find finite Fourier cosine transform of $f(x) = \left(1 \frac{x}{\pi}\right)^2$ in $(0, \pi)$.
 - (b) Using Z-transform, solve the difference equation $y_{n+2} 5y_{n+1} 6y_n = 2^n$ using $y_0 = 0, y_1 = 0.$

I B. Tech I Semester Regular Examinations Jan./Feb. - 2015 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, ECom E and Agri.E)

Time: 3 hours Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B**Answering the question in **Part-A** is Compulsory,
Three Questions should be answered from **Part-B*******

PART-A

1.(a) Using Newton-Raphson method find the reciprocal of a number.

(b) Express shift operator E in terms of exponential function.

(c) Find half range Fourier sine series of $f(x) = e^x$ in (0, 1).

(d) Using Euler's method, solve for y at x = 2 from $\frac{dy}{dx} = 3x^2 + 1$, y(1) = 2.

(e) If F_p is complex Fourier transform of f(x), then find the complex Fourier transform of f(x) sin ax.

(f) Find the $Z[n^2a^n]$.

[3+3+4+4+4+4]

PART-B

2.(a) Using Regulae falsi method find approximate root of the equation $x^3 - x - 4 = 0$.

(b) Find f(3.5) using Newton's forward interpolation formula for the data:

X	0	1	2	3	4	5
у	0	1	12	60	150	225

[8+8]

3.(a) Prove that $(1 + \Delta)(1 - \nabla) = 1$.

(b) Using Newton Raphson method compute $\sqrt[3]{37}$ correct to four decimal places.

[8+8]

4.(a) Using Euler's method solve $y^1 = x + y$, y(0) = 1 for x = 0.2 and 0.4, Check with exact solution.

(b) Expand $f(x) = \begin{cases} 1 + \frac{2x}{\pi}; & \text{if } -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}; & \text{if } 0 \le x \le \pi \end{cases}$ as a fourier series and hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}.$

[8+8]

5.(a) Obtain fourier cosine series for $f(x) = x \sin x$; $0 < x < \pi$.

(b) Using Runge-Kutta method of fourth order find y(0.4) for the differential equation $y^1 = x^2 + y^2$, y(0) = 0 use h = 0.2

[8+8]

Page 1 of 2

Set No - 4

- 6.(a) Express $f(x) = \begin{cases} 1; & 0 \le x \le \pi \\ 0; & x > \pi \end{cases}$ as a fourier sine integral and hence evaluate $\int_0^\infty \frac{1 \cos \pi \lambda}{\lambda} \sin x \lambda \, d\lambda.$
 - $\int_0^\infty \frac{1-\cos \pi \lambda}{\lambda} \sin x \lambda \, d\lambda.$ (b) Find $Z \left[2n 5\sin \frac{n\pi}{4} + 3a^4 \right].$

[8+8]

- 7.(a) Find the solution of the difference equation using Z-transform $y_{n+2} 6y_{n+1} + 9y_n = 3^n$ with $y_0 = 0$, $y_1 = 1$.
 - (b) Find fourier transform of $f(x) = \begin{cases} 1 x^2; |x| \le 1 \\ 0; |x| > 1 \end{cases}$