(8M)

(8M)

(8M)

I B. Tech I Semester Supplementary Examinations, May/June - 2019 **MATHEMATICS-II (MM)**

(Com. to ECE, EEE, EIE, Bio-Tech, E Com E, Agri E)

Time: 3 hours Max. Marks: 70

Note: 1. Question paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **THREE** Questions from **Part-B**

PART –A

- 1. a) Find the relation between Δ , ∇ , E. (4M)
 - Find four iterations of $3x = 1 + \cos x$ using Iteration method. (4M)
 - Write the merits of RK method. (4M)
 - Find the half range cosine series of f(x) = 2x in [0, 1]. (4M)
 - State Fourier integral theorem. (3M)
 - Find the Z- transform of unit step function. (3M)

PART-B

a) Find f(35) from the following table.

X	10	20	30	40
y	1.1	2.0	4.4	7.9

b) Find the missing value of the following data.

3	X	1	2	3	4	5
	y	7		13	21	37

- Find the positive root of $2x \log x_{10} = 7$ using Newton Raphson Method. (8M)
 - Find the positive root of $xe^x = 2$ using Bisection Method.
- Evaluate y (0.2) and y (0.4) by Taylor's method if y' = 1 2xy, y(0) = 0. (8M)
 - Find y(0.1) by Modified Euler's method given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1 (8M)
- Find the Fourier series of $f(x) = x + \pi$ in $(-\pi, \pi)$ (8M)
 - b) Find the Half range sine series of $f(x) = \begin{cases} 1 & 0 < x < 1 \\ -1 & 1 < x < 2 \end{cases}$ (8M)
- a) Using Fourier integral, Show that $\int_{0}^{\infty} \frac{\cos \lambda x + \lambda \sin \lambda x}{1 + \lambda^{2}} d\lambda = \begin{cases} 0 & \text{if } x < 0 \\ \pi e^{-x} & \text{if } x > 0 \end{cases}$ (8M)
 - b) Prove that $F\left\{x^n f(x)\right\} = (-i)^n \frac{d^n}{dp^n} [F(p)]$ (8M)

Code No: R13107

R13

SET - 1

- 7. a) Evaluate $Z^{-1}\left[\frac{z^2}{(z-1)(z-3)}\right]$, using convolution theorem. (8M)
 - b) Find (i) $Z\left[\sin\frac{n\pi}{2}\right]$ (ii) $Z\left[\cos\frac{n\pi}{2}\right]$ (8M)