I B. Tech I Semester Supplementary Examinations, April - 2022 MATHEMATICS-II (MM)

(Com. to ECE, EEE, EIE, Bio-Tech, E Com E, Agri E)
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering ALL the questions in Part-A is Compulsory
3. Answer any THREE Questions from Part-B

PART -A

1. a) Perform three iterations of bisection method to find positive square root of 30 in (5.477, 5.478).
b) Find unique polynomial $P(x)$ such that $P(1)=1, P(3)=27, P(4)=64$ using Lagrange's method of interpolation.
c) Using Euler's algorithm find $y(0.2)$ for the equation $\frac{d y}{d x}=1-y$ with initial condition $x=0, y=0$.
d) If $F(p)$ is the complex Fourier transform of $f(x)$, then prove that (3M) $F(f(a x))=\frac{1}{a} F\left(\frac{p}{a}\right), a \neq 0$.
e) If $f(x)=x \sin x$ in $(0,2 \pi)$ then find the Fourier coefficient a_{0}.
f) If $Z\{f(k)\}=F(z)$, then prove that $Z\{k f(k)\}=-z \frac{d}{d z} F(z)$.

PART -B

2. a) Find a real root of $x e^{x}=3$ using Regula-Falsi method.
b) Perform two iterations of the Newton-Raphson method to solve the system of equations $x^{2}+y^{2}+x y=7$ and $x^{3}+y^{3}=9$.
3. a) Construct difference table for the following data.

x	0.1	0.3	0.5	0.7	0.9	1.1	1.3
$\mathrm{f}(\mathrm{x})$	0.003	0.067	0.148	0.248	0.370	0.518	0.697

Evaluate f (0.6).
b) Find the interpolating polynomial $\mathrm{f}(\mathrm{x})$ as a cubic polynomial from the table.

x	0	1	4	5
c	4	3	24	39

4. a) Find the Fourier series of $f(x)=\left(\frac{\pi-x}{2}\right)^{2}$ in the interval $0<x<2 \pi$.
b) Obtain the Fourier sine series for $\mathrm{f}(\mathrm{x})=\mathrm{x} \sin \mathrm{x}, 0<x<\pi$.
5. a) Find the Fourier transform of $f(x)=\left\{\begin{array}{ll}\cos x & \text { for }|x| \leq a \\ 0 & \text { for }\end{array}|x|>a>0 . ~\right.$.
b) Find the Fourier sine transform of $f(x)=\frac{e^{-a x}}{x}$ and deduce

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\mathrm{e}^{-\mathrm{ax}}-\mathrm{e}^{-\mathrm{bx}}}{\mathrm{x}} \sin \mathrm{sxdx}=\tan ^{-1}(\mathrm{~s} / \mathrm{a})-\tan ^{-1}(\mathrm{~s} / \mathrm{b}) \tag{8M}
\end{equation*}
$$

6. a) Find the inverse Z - transform of $\frac{z}{(z+3)^{2}(z-2)}$.
b) Solve the difference equation, using Z -transform $y(n+2)+3 y(n+1)+2 y(n)=0$, given $\mathrm{y}(0)=0, \mathrm{y}(1)=1$.
7. a) Find the value of y at $\mathrm{x}=0.1$ by Picard's method, given that $\frac{d y}{d x}=\frac{y-x}{y+x}, \mathrm{y}(0)=1$.
b) Using Modified Euler method find $\mathrm{y}(0.2)$ and $\mathrm{y}(0.4)$ given $y^{\prime}=y+e^{x} \cdot \mathrm{y}(0)=0$.

2 of 2

