Subject Code: R13107/R13
I B. Tech I Semester Supplementary Examinations Aug. - 2015
MATHEMATICS-II (MATHEMATICAL METHODS)
(Common to ECE, EEE, EIE, Bio-Tech, ECom.E, Agri.E)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B
*****

## PART-A

1.(a) What is the difference between Bisetion method and Regula-Falsi method.
(b) Prove the result, $1+\mu^{2} \delta^{2}=\left(1+\frac{\delta^{2}}{2}\right)^{2}$
(c) Find the Picard's first approximation of $\frac{d y}{d x}=1+y^{2}, y(0)=0$
(d) If $f(x)=\frac{x}{2}$ express and $\mathrm{f}(\mathrm{x})$ as a Fourier series in the interval $(-\pi, \pi)$
(e) Find the inverse Finte cosine transform $\mathrm{f}(\mathrm{x})$ if $F_{c}(n)=\frac{\cos \left(\frac{2 n \pi}{3}\right)}{(2 n+1)^{2}}$, where $0<\mathrm{x}<4$
(f) Show that $Z[\sinh n \theta]=\frac{z \sinh \theta}{z^{2}-2 z \cosh \theta+1}$

$$
[3+4+4+4+3+4]
$$

## PART-B

2.(a) Find a root correct to 3 decimal places for the equation $x^{3}-4 x+9=0$ using bisection method.
(b) Find a real root of the equation $x e^{x}-\cos x=0$ using Netwon Raphson method.
3.(a) Certain values of $x$ and $\log _{10}^{x}$ are (300,2.4771),(304,2.4829),(305,2.4843),(307,2.4871). Find $\log _{10}^{301}$
(b) Using Lagrange's formula find $\mathrm{y}(5)$, given that

| x | 0 | 1 | 3 | 8 |
| :--- | :--- | :--- | :--- | :--- |
| y | 1 | 3 | 13 | 128 |

4.(a) Use Runge-Kutta fourth order method to find the value of y when $\mathrm{x}=1$ given that $\mathrm{y}=1$ When $\mathrm{x}=0, \frac{d y}{d x}=\frac{y-x}{y+x}$;
(b) Use Taylor's series method to approximate y when $\mathrm{x}=0.1, \mathrm{x}=0.2$ for $\frac{d y}{d x}=x+y^{2}$ where $y(0)=0$
5.(a) Obtain the Fourier series expansion of $\mathrm{f}(\mathrm{x})$ given that $f(x)=(\pi-x)^{2}$ in $0<x<2 \pi$ and Deduce the value of $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+-------=\frac{\pi^{2}}{6}$.
(b) Find the Fourier cosine transform of $\mathrm{f}(\mathrm{x})$ defined by $f(x)=\frac{1}{1+x^{2}}$ hence find Fourier sine transform of $f(x)=\frac{x}{1+x^{2}}$
6.(a) Using Fourier integral ,show that $e^{-a x}=\frac{2 a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2}+a^{2}} d \lambda, \quad(\mathrm{a}>0, \mathrm{x} \geq 0)$
(b) Obtain a half -range cosine series for $f(x)=\left\{\begin{array}{c}k x ; \text { for } 0 \leq x \leq l / 2 \\ k(x-1) ; \text { forl } / 2 \leq x \leq l\end{array}\right.$

And deduce the sum of the series $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \ldots \ldots \ldots . . .=\frac{\pi^{2}}{8}$
7.(a) Solve $y_{n+2}+6 y_{n+1}+9 y_{n}=2^{n}$ with $y_{0}=y_{1}=0$ Using Z-transform.
(b) If $F(z)=\frac{5 z^{2}+3 z+12}{(z-1)^{4}}$; then find the values of $y_{2}, y_{3}$

Subject Code: R13107/R13
I B. Tech I Semester Supplementary Examinations Aug. - 2015
MATHEMATICS-II (MATHEMATICAL METHODS)
(Common to ECE, EEE, EIE, Bio-Tech, ECom.E, Agri.E)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B
*****

## PART-A

1.(a) Find the reciprocal of 18 using Newten-Raphsen method.
(b) Prove that if $\mathrm{f}(\mathrm{x})$ is a polynomial of degree ' n ' and the values of x are equally spaced then $\Delta^{n} f(x)$ is a constant.
(c) Solve By Euler's method, the equation $\frac{d y}{d x}=x+y, y(0)=0$ Choose $\mathrm{h}=0.2$ compute $y(0.4)$.
(d) Define the Fourier series for even and odd functions.
(e) Find the Fourier transform $\mathrm{f}(\mathrm{x})$ defined by $f(x)=\left\{\begin{array}{l}e^{i q x}, \alpha<x<\beta \\ 0, x<\alpha, x>\beta\end{array}\right.$
(f) Using Convolution theorem show that $Z^{-1}\left[\frac{1}{n!} * \frac{1}{n!}\right]=\frac{2^{n}}{n!}$
$[4+3+4+3+4+4]$

## PART-B

2.(a) Find real root of the equation $x^{3}+x+1=0$ correct to 3 decimal places by iteration method.
(b) Find real root of the equation $x \log _{10} x=1.2$ correct to 4 decimal places by regula - Falsi method.
3.(a) Using Lagrange's formula, fit the polynomial to the data

| $x$ | -1 | 0 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| $y$ | -8 | 3 | 1 | 12 |

and hence find $\mathrm{y}(1)$.
(b) Applying Netwon's forward interpolation formula compute the value of $\sqrt{5.5}$ given that $\sqrt{5}=2.236, \sqrt{6}=2.449, \sqrt{7}=2.646, \sqrt{8}=2.828$ correct upto three places of decimal.
4.(a) Given $\frac{d y}{d x}-\sqrt{x y}=2$ and $y(1)=1$. Find the value of $y(1.5)$ in steps of 0.25 using Euler's modified method.
(b) Given $\frac{d y}{d x}=1+x y, \mathrm{y}=1$ at $\mathrm{x}=0$ compute $\mathrm{y}(0.1)$ correct to 4 decimal places using Taylor series method.
5.(a) Find a Fourier series to represent the function $f(x)=e^{x}$, for $-\pi<x<\pi$ and hence derive a series for $\frac{\pi}{\sinh \pi}$
(b) Obtain the half-range sine and cosine series for the function $f(x)=\frac{\pi x}{8}(\pi-x)$ in the range $0 \leq x \leq \pi$.
6.(a) Show that the Fourier transform of $f(x)=\left\{\begin{array}{c}a-|x|, \text { for }|x|<a \\ 0, \text { for }|x|>a\end{array}\right.$ is $\sqrt{\frac{2}{\pi}}\left(\frac{1-\cos a s}{s^{2}}\right)$ Hence deduce that $\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{2}=\frac{\pi}{2}$
(b) Find the finite Fourier sine transform of $\mathrm{f}(\mathrm{x})=$ defined by $f(x)=\left(1-\frac{x}{\pi}\right)^{2}$ where $0<\mathrm{x}<\pi$
7.(a) Find the inverse Z-transform of $\frac{4 z^{2}-2 z}{z^{3}-5 z^{2}+8 z-4}$
(b) Find the Z-transform of the following functions

$$
\begin{equation*}
\text { (i) } 2 n-5 \sin \frac{n \pi}{4}+3 a^{4} \text { (ii) } \cos \left(\frac{n \pi}{2}+\theta\right) \tag{8+8}
\end{equation*}
$$

Subject Code: R13107/R13
I B. Tech I Semester Supplementary Examinations Aug. - 2015
MATHEMATICS-II (MATHEMATICAL METHODS)
(Common to ECE, EEE, EIE, Bio-Tech, ECom.E, Agri.E)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B
*****

## PART-A

1.(a) What is the convergence of Newton-Raphson method.
(b) Find the second difference of the polynomial $x^{4}-12 x^{3}+42 x^{2}-30 x+9$ with interval of difference $\mathrm{h}=2$
(c) Using Runge-Kutta method of second order, compute $\mathrm{y}(2.5)$ from $\frac{d y}{d x}=\frac{x+y}{x}, \mathrm{y}(2)=2$, Taking $\mathrm{h}=0.25$.
(d) What is condition for expansion a Fourier series?
(e) Prove that $F\left(x^{n} f(x)\right)=(-i)^{n} \frac{d^{n}}{d p^{n}}[F(p)]$
(f) Find $Z\left[\frac{1}{(n+1)(n+2)}\right]$

## PART-B

2.(a) Evaluate $\sqrt{12}$ and $\frac{1}{\sqrt{12}}$ by the fixed point iteration method.
(b) Find the real root for $x e^{x}=2$ by using Regula -Falsi method.
3.(a) Using Lagrange's interpolation formula , express $\frac{3 x^{2}+x+1}{(x-1)(x-2)(x-3)}$ as sum of partial fractions.
(b) Using Netwen's forward interpolation formula, evaluate $\mathrm{y}(1.2)$.

| x | 1.1 | 1.3 | 1.5 | 1.7 | 1.9 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| y | 0.21 | 0.69 | 1.25 | 1.89 | 2.61 |

4. (a) Use Runge-Kutta method to solve $10 \frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$ for the interval $0<x \leq 4$ with $\mathrm{h}=0.4$
(b) Apply Taylor series method to find $\mathrm{y}(1.1), \mathrm{y}(1.2)$ correct to 3 decimal places, given $\frac{d y}{d x}=x y^{1 / 3}, \mathrm{y}(0)=1$.

Subject Code: R13107/R13
5.(a) If $f(x)=\left\{\begin{array}{c}x ; 0<x<\pi / 2 \\ \pi-x ; \pi / 2<x<\pi\end{array}\right.$

Show that $f(x)=\frac{\pi}{4}-\frac{2}{\pi}\left[\frac{1}{1^{2}} \cos 2 x+\frac{1}{3^{2}} \cos 6 x+\frac{1}{5^{2}} \cos 10 x+-------\right]$
(b) Obtain a half range cosine series for $f(x)=\left\{\begin{array}{c}K x, 0 \leq x \leq \frac{L}{2} \\ K(L-x), \frac{L}{2} \leq x \leq L\end{array}\right.$ Deduce the sum of the series $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots \ldots . . . . . . .$.
6.(a) Show that the Fourier transform of $e^{\frac{-x^{2}}{2}}$ is $\sqrt{2 \pi} \cdot e^{-p^{2} / 2}$ by finding the Fourier transform of $e^{-a^{2} x^{2}},(a>0)$
(b) Find the finte Fourier cosine transform of (i) $f(x)=\frac{x^{2}}{2 \pi}-\frac{\pi}{6}, 0 \leq \mathrm{x} \leq \pi$ (ii) $f(x)=x, 0<x<4$
7.(a) Using Z-transform solve $y_{n+2}+2 y_{n+1}+y_{n}=n$; Given that $y_{0}=y_{1}=0$
(b) Find (i) $Z\left[a^{n} \sin n t\right]$ (ii) $Z\left[a^{n} \cosh n t\right]$

## Page 2 of 2

Subject Code: R13107/R13
I B. Tech I Semester Supplementary Examinations Aug. - 2015
MATHEMATICS-II (MATHEMATICAL METHODS)
(Common to ECE, EEE, EIE, Bio-Tech, ECom.E, Agri.E)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B
*****

## PART-A

1.(a) What is the convergence of Newton - Raphson method.
(b) Evaluate $\Delta^{n} e^{a x+b}$
(c) Using Euler's method, Solve for y at $\mathrm{x}=2$ from $\frac{d y}{d x}=3 x^{2}+1, y(1)=2$, and $\mathrm{h}=0.5$
(d) Find half range Fourier series for $f(x)=a x+b, 0<x<1$
(e) State and prove that modulation property.
(f) Evaluate the inverse Z- transform of $\log \left(1+\frac{a}{z}\right) ;|z|>|a|$

## PART-B

2.(a) Find the root of the equation $x \sin x-1=0$ lies in between $x=1$ and $x=1.5$ using bisection method.
(b) Using Netwon Raphson method
(i) Find square root of a number (ii) Find Reciprocal of a number.
3.(a) Find the cubic polynomial which takes the following values $y(0)=1, y(1)=0, y(2)=1, y(3)=10$
(b) (i) if $\mathrm{y}_{\mathrm{x}}$ is the value of at for which the fifth differences are constant and $y_{1}+y_{7}=-784, y_{2}+y_{6}=686, y_{3}+y_{5}=1088$, find $y_{4}$
(ii) if $f(x)=x^{3}+5 x-7$, from a table of forward differences taking $\mathrm{x}=-1,0,1,2,3,4,5$.

Show that the third differences are constant.
4.(a) Given $\frac{d y}{d x}=x^{2}+y, y(0)=1$ determine $y(0.02), y(0.04)$ using Euler's modified method.
(b) Given the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}$ with initial condition $\mathrm{y}=0$ at $\mathrm{x}=0$, use

Picard's method's to obtain y at $\mathrm{x}=0.25, \mathrm{x}=0.5, \mathrm{x}=1$.

## Page 1 of 2

WWW.MANARESULTS.CO.IN
5.(a) Obtain Fourier series for the function $\mathrm{f}(\mathrm{x})$ given by $f(x)=\left\{\begin{array}{l}1+\frac{2 x}{\pi},-\pi \leq x \leq 0 \\ 1-\frac{2 x}{\pi}, 0 \leq x \leq \pi\end{array}\right.$
and deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \ldots \ldots . .=\frac{\pi^{2}}{8}$
(b) Develop $\mathrm{f}(\mathrm{x})$ as Forier series in $(-2,2)$, if $f(x)=\left\{\begin{array}{c}0,-2<x<-1 \\ k,-1<x<1 \\ 0,1<x<2\end{array}\right.$
6.(a) Find the Fourier sine transform of $\mathrm{f}(\mathrm{x})$, defined by $f(x)=x^{m-1}$
(b) Find the inverse Fourier cosine transform $f(x)$ of $F_{C}(p)=\left\{\begin{array}{c}\frac{1}{2 a}\left(a-\frac{p}{2}\right), p<2 a \\ 0, p \geq 2 a\end{array}\right.$
7.(a) Find the inverse Z-transform of $\frac{8 z-z^{3}}{(4-z)^{3}}$
(b) Find (i) $Z\left[n^{2} a^{n}\right] \quad$ (ii) $Z\left[2.5^{n}+3 . n\right]$ and deduce $Z\left[2.5^{n+3}+3(n+3)\right]$

