I B. Tech I Semester Supplementary Examinations Sept. - 2014
 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE and Agri.E)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1. (i) Write iterative scheme to find the cube root of a real number $\mathrm{K}(>0)$.
(ii) Express shift operator E in terms of exponential function.
(iii) Given $y^{\prime}=x+y, y(0)=1$, find the value of $\mathrm{y}(0.4)$ (take $\mathrm{h}=0.2$) using Euler's method.
(iv) Find Fourier series of $f(x)=|x|$ in $(-2,2)$.
(v) If F_{p} is complex Fourier transform of $\mathrm{f}(\mathrm{x})$, then find the complex Fourier transform of $\mathrm{f}(\mathrm{x}) \cos \mathrm{ax}$.
(vi) Prove that

$$
Z(\sinh n t)=\frac{z \sinh t}{z^{2}-2 z \cosh t+1}
$$

PART-B

$$
[3+3+3+3+5+5]
$$

2.(a) Find positive root of $x^{3}-5 x+3=0$ using bisection method up to 4 steps.
(b) The population of a town in the decimal census is given below. Estimate the population of a town for the year 1895

Year X	1891	1901	1911	1921	1931
Population Y	46	66	81	93	101

3.(a) Using Newton-Raphson method Compute $\sqrt{41}$ correct to 4 decimal places.
(b) Using Lagrange's interpolation formulae find the value of $\mathrm{y}(12)$ from the data

X	4	7	8	10
Y	10	15	17	21

4.(a) Solve $y^{\prime}=x y+1, y(0)=1$ using Taylors method up to $3^{\text {rd }}$ degree term and compute $\mathrm{y}(0.1)$.
(b) Find the fourier series of $f(x)=x^{2}-x$ in $(-\pi, \pi)$. Hence deduce that
$\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots=\frac{\pi^{2}}{6}$.

Subject Code: R13107/R13

5.(a) Find half range sine series of $f(x)=\left\{\begin{array}{l}1,0<x<\frac{\pi}{2} \\ -1, \frac{\pi}{2}<x<\pi\end{array}\right.$.
(b) Use Runge-Kutta $4^{\text {th }}$ to compute $\mathrm{y}(1.25)$ given that $\frac{d y}{d x}=\frac{x+y}{x}, y(1)=2$
6.(a) Find Fourier transform $f(x)=\left\{\begin{array}{l}x \text { if }|x| \leq a \\ 0 \text { if }|x|>a\end{array}\right.$.
(b) Find Z-transform of $n^{2} a^{n}$.
7.(a) Find Fourier cosine transform of $e^{-a x}, a>0$ and hence deduce the inversion formula.
(b) If $Z[f(n)]=\frac{z}{z-1}+\frac{z}{z^{2}+1}$, find $Z[f(n+2)]$.

I B. Tech I Semester Supplementary Examinations Sept. - 2014
 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE and Agri.E)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Using a numerical method for the square root of 11 .
(ii) P.T. $\delta=E^{1 / 2}-E^{-1 / 2}$.
(iii) If $y^{\prime}-x+y, y(0.4)=1.48$, find $y(0.9)$ with $\mathrm{h}=0.25$ using Euler's method and compare it with exact solution.
(iv) Find the Half range Fourier sine series of $f(x)=|x|$ in $(0,1)$.
(v) Prove $F\left[x^{n} f(x)\right]=(-i)^{n} \frac{d^{n}}{d p^{n}}[F(p)]$.
(vi) Prove that $Z(\cosh n t)=\frac{z(z-\cosh t)}{z^{2}-2 z \cosh t+1}$.

PART-B

2.(a) Find the root of the $x^{4}-x^{3}-2 x^{2}-6 x-4=0$ lying between 2 and 3 upto 4 stages.
(b) Use Gauss forward interpolation formulae to find $f(30)$ solve that $\mathrm{f}(21)=18.4, \mathrm{f}(25)=17.8, \mathrm{f}(29)=17.1, \quad \mathrm{f}(33)=16.3$ and $\mathrm{f}(37)=15.5$.
3.(a) Find a positive root of $2 x=3+\cos x$ by using Newton-Raphson method.
(b) Using Lagrange's Interpolation formula for the value of $y(1.3)$ given the following table

X	0.7	0.9	0.95	1.2
Y	1.25	1.5	2.0	2.7

4.(a) Solve $y^{\prime}=y-x^{2}, y(0)=1$ using Picard's method up to third approximation and hence find the value of $y(0.1)$.
(b) Find the Fourier expansion of $f(x)=x \cos x, 0<x<2 \pi$.

Page 1 of 2
WWW.MANARESULTS.CO.IN

Subject Code: R13107/R13

5.(a) Find half range cosine series of $f(x)=\left\{\begin{array}{l}1,0<x<\frac{\pi}{2} \\ -1, \frac{\pi}{2}<x<\pi\end{array}\right.$.
(b) Find $\mathrm{y}(0.1)$ using $4^{\text {th }}$ order Runge-Kutta method given that $y^{\prime}=x+x^{2} y, y(0)=1$.
6.(a) Find the Fourier transform of $\frac{1}{\sqrt{|x|}}$.
(b) Find Z-transform of $n^{2} e^{n \theta}$.
7.(a) Find Fourier cosine transform of $\frac{1}{1+x^{2}}$ and hence find Fourier sine transform of $\frac{x}{1+x^{2}}$.
(b) Solve $y(n+2)+3 y(n+1)+2 y(n)=0, y(0)=0, y(1)=1$ using Z-Transform.

Subject Code: R13107/R13

I B. Tech I Semester Supplementary Examinations Sept. - 2014
 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE and Agri.E)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Find reciprocal of a real number K using Newton-Raphson method.
(ii) Prove that $\mu=\frac{1}{2}\left[E^{1 / 2}+E^{-1 / 2}\right]$
(iii) Employ Taylor's method to obtain the values of $y(1.1)$ for the differential equation $y^{\prime}=x y^{1 / 3}, y(1)=1$. Compare the solution with exact solution.
(iv) A sinusoidal voltage $E \sin \omega t$ is passed through a half wave rectifier which clips the negative portion of the wave. Develop the resulting periodic function
$u(t)=\left\{\begin{array}{cc}0 \quad,-\frac{T}{2}<t<0 \\ E \sin \omega t, & 0<t<\frac{T}{2}\end{array}, T=\frac{2 \pi}{\omega}\right.$ as Fourier series.
(v) Prove that $F\left[\frac{d^{n}}{d x^{n}} F(x)\right]=(-i p)^{n} F(p)$
(vi) Prove that $Z(\sin n t)=\frac{z \sin t}{z^{2}-2 z \cos t+1}$.
$[3+3+4+4+4+4]$

PART-B

2.(a) By using Regula-Falsi method for a real root of $x e^{x}=2$ up to 4 stages.
(b) Using a Backward difference formula, find $\mathrm{y}(8)$ from the given table

X	0	5	10	15	20	25
Y	7	11	14	18	24	32

3.(a) Using Newton-Raphson formula, find the root between 0 and 1 of $x^{3}=6 x-4$ correct to 3 decimal places.
(b) Using Lagrange's Interpolation formula, find the value $y(2)$ given the following table of values

X	1	1.1	1.4	1.8
Y	2	4	8	11

Page 1 of 2
WWW.MANARESULTS.CO.IN

Subject Code: R13107/R13

4.(a) Using Euler's method, solve for y at $\mathrm{x}=0.5$ from $y^{\prime}=2 x y, y(0)=1$ using step size 0.25 .
(b) Find the Fourier series of $f(x)=\left\{\begin{array}{cc}0, & -\pi<x<0 \\ \frac{\pi x}{4}, & 0<x<\pi\end{array}\right.$ and hence deduce that

$$
\begin{equation*}
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8} \tag{8+8}
\end{equation*}
$$

5.(a) Represent the function as Fourier sine series $f(x)= \begin{cases}\frac{\pi}{2}, & 0<x<\frac{\pi}{2} \\ \pi-x, & \frac{\pi}{2}<x<\pi\end{cases}$
(b) Use Runge-Kutta $4^{\text {th }}$ order to compute $y(1.25)$ for the equation $y^{\prime}=\frac{x+y}{x}, y(1)=2$.
6.(a) Find the Fourier sine transform of $\frac{e^{-a x}}{x}$.
(b) If $Z[f(n)]=\frac{z}{z-1}+\frac{z}{z^{2}+1}$ find $\mathrm{Z}[\mathrm{f}(\mathrm{n}+2)]$.
7.(a) Find Fourier transform of $f(x)=\left\{\begin{array}{ll}x & \text { if }|x| \leq a \\ 0 & \text { if }|x|>a\end{array}\right.$.
(b) Solve $u_{n+2}-6 u_{n+1}+9 u_{n}=0$ using Z-transform.

Subject Code: R13107/R13

I B. Tech I Semester Supplementary Examinations Sept. - 2014
 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE and Agri.E)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B
Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Evaluate $\sqrt[3]{28}$ to four decimal places by Newton-Raphson method.
(ii) If the interval of differencing is unity, $\Delta \tan ^{-1}\left(\frac{n-1}{n}\right)=\tan ^{-1} \frac{1}{2 n^{2}}$.
(iii) Using Taylor's series method obtain $\mathrm{y}(0.2)$ for the differential equation $y^{\prime}-2 y=3 e^{x}, y(0)=0$. Compare with exact solution.
(iv) Find the Fourier series of $f(x)=|\cos x| \operatorname{in}(-\pi, \pi)$.
(v) Find Fourier transform of $f(x)=\left\{\begin{array}{l}1,|x|<a \\ 0,|x|>a\end{array}\right.$ and hence evaluate $\int_{0}^{\infty} \frac{\sin p}{p} d p$.
(vi) Prove that $Z(\cos n t)=\frac{z(z-\cos t)}{z^{2}-2 z \cos t+1}$.
$[3+3+4+4+4+4]$

PART-B

2.(a) Find a real root of $x^{3}-4 x-9=0$ using Regula-Falsi method up to 4 stages.
(b) Using Gauss Backward difference polynomial, find $y(5)$ given that

X	0	3	6	9	12
Y	5	11	13	15	17

3.(a) Using Newton-Raphson method, find a positive root of $\cos x-x e^{x}=0$.
(b) Using Lagrange's Interpolation, find $\mathrm{f}(\mathrm{x})$

X	4	7	8	10
Y	10	15	17	21

4.(a) Using Euler's method, solve for y at $\mathrm{x}=0.4$ from $y^{\prime}=2 x y, y(0)=1$ using step size 0.2
(b) Find the Fourier series of periodicity 3 for $f(x)=2 x-x^{2}$ in $0<x<3$.

Page 1 of 2
WWW.MANARESULTS.CO.IN

Subject Code: R13107/R13

5.(a) Represent the function as Fourier cosine series $f(x)=\left\{\begin{array}{cc}\frac{\pi}{2}, & 0<x<\frac{\pi}{2} \\ \pi-x, & \frac{\pi}{2}<x<\pi\end{array}\right.$.
(b) Estimate $y(0.2)$, given $y^{\prime}=3 x+\frac{y}{2}, y(0)=1$ using Runge-Kutta $4^{\text {th }}$ order.
6.(a) Find Fourier Sine transform of $\frac{e^{-a x}}{x}$.
(b) Find the Z-transform of $\{\mathrm{x}(\mathrm{n})\}=n z^{n}$
7.(a) Find Fourier transform of $f(x)=\left\{\begin{array}{c}\frac{1}{2 a},|x| \leq a \\ 0,|x|>a\end{array}\right.$.
(b) Solve $u_{n+2}-u_{n}=2^{n}, u_{0}=0, u_{1}=1$ using Z-transform.

