I B. Tech I Semester Supplementary Examinations, November - 2020 MATHEMATICS-II (MM)

(Com. to ECE, EEE, EIE, Bio-Tech, E Com E, Agri E)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any THREE Questions from Part-B

PART -A

1. a) Show that $\Delta=E \nabla=\nabla E=\delta E^{\frac{1}{2}}$
b) Find four iterations of $3 x=1+\cos x$ Newton raphson method.
c) Write the demerits of Euler's method.
d) Find the half range sine series of $f(x)=2 x$ in [0,1$]$
e) Find the Fourier transform of $f(x)$ defend by $f(x)= \begin{cases}1 & \text { if }|x|<a \\ 0 & \text { if }|x|>a\end{cases}$
f) Write the shifting theorems in z -transform.

PART -B

2. a) Find $\mathrm{f}(15)$ from the following table.

x	10	20	30	40
y	1.1	2.0	4.4	7.9

b) Find polynomial which is passing through the following points

$$
\begin{equation*}
(-1,-21),(1,15),(2,12),(3,3) \tag{8M}
\end{equation*}
$$

3. a) Find the positive root of $2 \mathrm{x}-\log \mathrm{x}_{10}=7$ using Iteration Method.
b) Find the positive root of $\mathrm{xe}^{\mathrm{x}}=1$ using Bisection Method.
4. a) Find $y(0.1)$ and $y(0.2)$ using Runge-Kutta $4^{\text {th }}$ order, given that $y^{\prime}=x^{2}-y, y(0)=1$
b) Find $y(0.1)$ by Picard's method given that $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$
5. a) Find the Fourier series of $f(x)=e^{-x}$ in $(0,2 \pi)$ and hence deduce that

$$
\begin{equation*}
\frac{\pi}{2 \sinh \pi}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}+1} \tag{8M}
\end{equation*}
$$

b) Find the Half range cosine series of $f(x)=x$ in [$0, \pi]$ Hence deduce (8 M)

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots .=\frac{\pi^{2}}{8}
$$

6. a) Using Fourier integral, show that $e^{-x} \cos x=\frac{2}{\pi} \int_{0}^{\infty} \frac{\lambda^{2}+2}{\lambda^{2}+4} \cos \lambda x d \lambda$
b) Find the Finite Fourier Cosine transforms of $f(x)$ defined by $f(x)=\left\{\begin{array}{l}x, 0<x<\frac{\pi}{2} \\ \pi-x, \frac{\pi}{2}<x<\pi\end{array}\right.$
7. a) Find the inverse Z - transform of $\left[\frac{z}{z^{2}+11 z+24}\right]$
b) Solve the difference equation $y_{n+2}-5 y_{n+1}+6 y_{n}=3 n+5, y_{0}=1, y_{1}=3$ using

Z-Transforms

