I B. Tech I Semester Supplementary Examinations, December- 2021 MATHEMATICS-II (MM)

(Com. to ECE, EEE, EIE, Bio-Tech, E Com E, Agri E)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any THREE Questions from Part-B

PART -A

1. a) Evaluate $(\Delta+\nabla)\left(x^{2}+x\right)$ by taking $\mathrm{h}=1$.
b) Find four iterations of $3 \mathrm{x}=1+\cos \mathrm{x}$ iteration method.
c) Using Taylor's series Find $y(2.1)$, Given that $\frac{d y}{d x}=\frac{x-y}{x}, y(2)=2$
d) Find the half range sine series of $f(x)=x+2$ in $[0,1]$
e) Find the Fourier transform of $f(x)$ defend by $f(x)= \begin{cases}\frac{x}{2} & \text { if }|x|<2 \\ 0 & \text { if }|x|>2\end{cases}$
f) Find the z -transform of $(1 / 2)^{n}+(1 / 3)^{n}$

PART -B

2. a) Find $f(5)$ from the following table.

x	1	2	3	4
y	11	20	44	79

b) Find polynomial which is passing through the following points
$(1,21),(3,15),(4,18),(6,25)$
3. a) Find the positive root of $x \log x_{10}=1.2$ using Bisection Method.
b) Find the positive root of $\mathrm{xe}^{\mathrm{x}}=2$ using Newton Raphson Method.
4. a) Find $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$ using Runge-Kutta $4^{\text {th }}$ order, given that $y^{\prime}=\frac{x^{2}+y}{x+y}, y(0)=1$
b) Find $\mathrm{y}(0.1)$ by Modified Euler's method given that $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$
5. a) Expand $f(X)=x \sin x \quad 0<x<2 \pi$ as a Fourier series and deduce that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}=\frac{3}{4} \tag{8M}
\end{equation*}
$$

1 of 2
b) Find the Half range cosine series of $f(x)= \begin{cases}\frac{x}{2}, & 0 \leq x \leq \frac{\pi}{2} \\ \frac{-x}{2}, & \frac{\pi}{2}<x<\pi\end{cases}$
6. a) Find the Finite Fourier sine transform of $f(x)$ defined by

$$
f(x)=\left\{\begin{array}{lc}
x & 0<x<\frac{\pi}{2} \tag{8M}\\
\pi-x & \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

b) Using Fourier integral, Show that $\int_{0}^{\infty} \frac{\sin \pi \lambda}{1-\lambda^{2}} \sin \lambda x d \lambda= \begin{cases}\frac{1}{2} \pi \sin x & \text { if } 0<x<\pi \\ 0 & \text { if } x>\pi\end{cases}$
7. a) State and prove final value theorem in Z-transforms.
b) Solve the difference equation $y_{n+2}-4 y_{n+1}+3 y_{n}=0, y_{0}=2, y_{1}=4$ using Z-Transforms.

