I B. Tech I Semester Supplementary Examinations, May/June - 2019 ENGINEERING MECHANICS

(Com. to CE,ME,CSE,PCE,IT,Chem E, Aero E, AME, Min E, PE, Metal E, Textile Engg) Time: 3 hours

Max. Marks: 70

Note: 1. Question paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any THREE Questions from Part-B
$\sim \sim ~$

PART -A

1. a) Compare between moment and a couple.
b) What is the converse of the law of triangle of forces?
c) Explain Pappu's first theorem.
d) Define mass moment of inertia with a simple example.
e) What is fixed axis rotation? Give example.
f) Explain Work-Energy method.

PART - B

2. a) A 400lb block is resting on rough horizontal surface for which the coefficient of friction is 0.40 . Determine the force P required to cause motion to impend if applied to the block
(i) Horizontally or
(ii) Downward at 300 with the horizontal
b) Define Cone of friction.
3. a) A prismatic bar AB of weight $\mathrm{Q}=44.5 \mathrm{~N}$ is supported by two vertical wires at its ends and carries at D a load $\mathrm{P}=89 \mathrm{~N}$ as shown in figure. Determine the forces Sa and Sb in the two wires.

b) Two identical rollers each of weight $\mathrm{Q}=445 \mathrm{~N}$ are supported by an inclined plane and a vertical wall as shown in the figure. Assuming smooth surfaces, find the reactions induced at the points of support A, B and C .

|"|"||"||"|||| www.manaresults.co.in
4. a) Locate the centroid of given parabola bounded by x - axis the line $x=a$.

b) Find the centroid of a channel as shown in figure below. All dimensions are incm.

5. a) Determine the moment of inertia of a hallow circular section about its centroidal axes as shown in figure below

2 of 3
b) Calculate moment of Inertia of angle section about x -axis.

6. a) A ball projected vertically upwards attains a maximum height of 400 m . Calculate the velocity of projection and compute the time of flight in air. At what altitude will this ball meet a second ball projected vertically upwards 4seconds later with a speed of 120 m per second?
b) A body weighing 20 N is projected up a 200 inclined plane with a velocity of
$12 \mathrm{~m} / \mathrm{s}$, coefficient of friction is 0.15 . Find
(i) The maximum distance S, that the body will move up the inclined plane
(ii) Velocity of the body when it returns to its original position.
7. If $\mathrm{Wa}: \mathrm{Wb}: \mathrm{Wc}$ is in the ratio of 3:2:1, find the accelerations of the blocks $\mathrm{A}, \mathrm{B}, \quad(16 \mathrm{M})$ andC. Assume that the pulleys are weightless.

3 of 3

