I B. Tech I Semester Supplementary Examinations, May - 2018 MATHEMATICS-I

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer **ALL** the question in **Part-A**
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

- 1. a) Solve the DE $y(xy + e^x)dx e^x dy = 0$. (2M)
 - b) Solve the DE $y^{11} 2y^1 + 10y = 0$, given y(0) = 4, $y^1(0) = 1$. (2M)
 - c) If $u = \frac{x^2 y^2}{x + y}$ then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ (2M)
 - d) If $f(x, y, z) = e^{xyz}$ then find $\frac{\partial^3 f}{\partial x \partial y \partial z}$ (2M)
 - e) Find $L\{\delta(t-3)\}$ (2M)
 - f) Solve z=p(x+1)+q(y+2). (2M)
 - g) Classify the nature of the PDE $\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + 4 \frac{\partial^2 u}{\partial y^2} = 0$ (2M)

PART -B

- 2. a) A body kept in air with temperature 25°C cools from 140°C to 80°C in 20 (7M) minutes. Find when the body cools down to 35°C.
 - b) An R L circuit has an Emf given (in volts) by 10 sin t, a resistance of 90 (7M) ohms, an inductance of 4 henries. Find the current at any time t by assuming zero initial current.
- 3. a) Solve the DE $(D^2 + 1)y = \cot x$ by the method of variation of parameters (7M)
 - b) Determine the charge on the capacitor at any time t > 0 in circuit in series having an emf $E(t) = 100 \sin 60 t$, a resistor of 2 ohms, an inductor of 0.1 henries and capacitor of $\frac{1}{260}$ farads, if the initial current and charge on the capacitor are both zero.
- 4. a) Evaluate $\int_0^\infty \frac{e^{-t} e^{-2t}}{t} dt$ (7M)
 - b) Using Laplace transform solve $y(t) = sint + \int_0^t u \, y(t u) \, du$ (7M)
- 5. a) Find the minimum value of $x^2 + y^2 + z^2$ subject to ax + by + cz = p. (7M)

- b) Check whether the following are functionally dependent or not, then find the (7M) relation between $u = \frac{x-y}{x+y}, v = \frac{xy}{\left(x+y\right)^2}$
- 6. a) Find partial differential equation by eliminating arbitrary function (7M) $f(x^2 + y^2, z xy) = 0$
 - b) Solve the PDE $\frac{p^2}{z^2} = 1 pq$. (7M)
- 7. a) Solve the PDE $\left(D^2 3D D^{1^2} + 3D^1\right)z = e^{x-2y}$ (7M)
 - b) Solve the PDE $(D-D^1-1)(D-D^1-2)z = x + e^{3x-y}$ (7M)