SET - 1

I B. Tech I Semester Supplementary Examinations, November - 2020 MATHEMATICS-I

Max. Marks: 70
Time: 3 hours

Note: 1. Question paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is Compulsory
 3. Answer any FOUR Questions from Part-B

PART -A

1. a) Solve the ODE $y d x-x d y=3 x^{2} e^{x^{3}} y^{2} d x$
b) Solve the $\mathrm{DE} \frac{d^{2} x}{d t^{2}}+x=0$ given that $x(0)=2, x\left(\frac{\pi}{2}\right)=-2$
c) Expand sinx about origin using Taylor's theorem.
d) if $f(x, y, z)=e^{x^{2}+y^{2}+z^{2}}$ then find $\frac{\partial^{3} f}{\partial x \partial y \partial z}$
e) Find $L^{-1}\left\{\frac{s}{s^{2}+4 s+5}\right\}$
f) Solve $\mathrm{p}-\mathrm{q}=\mathrm{x}-\mathrm{y}$.
g) Classify the nature of the PDE $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial^{2} u}{\partial x \partial y}=0$

PART -B

2. a) Find orthogonal trajectories of the Family of curves $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$, where ' a ' is the parameter.
b) A resistance of 100 ohms an inductance of 0.5 henry are connected in series with a battery of 20 volts. Find the current in the circuit as a function of t, if initially there is no current in the circuit.
3. a) Solve the $\mathrm{DE}\left(D^{2}-1\right) y=e^{-x} \sin \left(e^{-x}\right)+\cos \left(e^{-x}\right)$ by the method of variation of parameters.
b) An electric consists of an inductance of 0.1 henries a resistance of 20 ohms and a condenser of 25 micro farads. Find the charge q and the current i at any time t, given that $\mathrm{q}(0)=0.05$ and $\mathrm{f}(0)=0$.
4. a) Find $L\{f(t)\}$ where $f(t)$ is a periodic function of period 2π and is given by .
5. a) Find the extreme value of $x^{2}-y^{2}$ subject to $x^{2}+2 y^{2}+3 z^{2}=1$.
b) Prove that the functions $u=x^{2} e^{-y} \cosh z, v=x^{2} e^{-y} \operatorname{sinhz}$ and $w=3 x^{4} e^{-2 y}$ are functionally dependent and hence find the relation between them.
6. a) Find partial differential equation by eliminating arbitrary function (7M) $z=f\left(x^{2}-y\right)+g\left(x^{2}+y\right)$
b) Solve the PDE $q^{2}=z^{2} p^{2}\left(1-p^{2}\right)$
7. a) Solve the $\operatorname{PDE}\left(D^{2}-D D^{1}-2 D\right) z=\sin (3 x+4 y)$
b) Solve the $\operatorname{PDE}\left(D+D^{1}-1\right)\left(D+2 D^{1}-3\right) z=4+3 x+6 y$
