

I B. Tech I Semester Supplementary Examinations, November - 2020 **MATHEMATICS-I**

Time: 3 hours	Max. Marks: 70
 Note: 1. Question paper consists of two parts (Part-A and Par 2. Answering the question in Part-A is Compulsory 3. Answer any FOUR Questions from Part-B 	·t-B)
<u>PART –A</u>	~~~
1. a) Solve the ODE $ydx - xdy = 3x^2e^{x^3}y^2dx$	(2M)
b) Solve the DE $\frac{d^2x}{dt^2} + x = 0$ given that $x(0) = 2$, $x\left(\frac{\pi}{2}\right) = -2$	(2M)
c) Expand sinx about origin using Taylor's theorem.	(2M)
d) if f(x,y,z) = $e^{x^2+y^2+z^2}$ then find $\frac{\partial^3 f}{\partial x \partial y \partial z}$	(2M)
e) Find $L^{-1}\left\{\frac{s}{s^2+4s+5}\right\}$	(2M)
f) Solve $p - q = x - y$.	(2M)
Classify the nature of the PDE $\frac{\partial^2 u}{\partial u^2} - 2\frac{\partial^2 u}{\partial u^2} = 0$	

g) Classify the nature of the PDE
$$\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial^2 u}{\partial x \partial y} = 0$$
 (2M)

PART -B

- 2. a) Find orthogonal trajectories of the Family of curves $x^{2/3} + y^{2/3} = a^{2/3}$, where 'a' (7M) is the parameter.
 - b) A resistance of 1 00 ohms an inductance of 0.5 henry are connected in series with (7M) a battery of 20 volts. Find the current in the circuit as a function of t, if initially there is no current in the circuit.
- Solve the DE $(D^2-1)y = e^{-x}\sin(e^{-x}) + \cos(e^{-x})$ by the method of variation of 3. a) (7M) parameters.
 - b) An electric consists of an inductance of 0.1 henries a resistance of 20 ohms and a (7M) condenser of 25 micro farads. Find the charge q and the current i at any time t, given that q(0) = 0.05 and f(0) = 0.

4. a) FindL{f(t)} where f(t) is a periodic function of period2 π and is given by (7M)

$$f(t) = \begin{cases} sint, & 0 < t < \pi \\ 0, & \pi \le t < 2\pi \end{cases}$$

b) Using Laplace transform, solve $y(t) = 1 - e^{-t} + \int_0^t y(t-u) \sin u \, du$. (7M)

www.manaresults.co.in |"|'|"|"|"|||||

- 5. a) Find the extreme value of $x^2 y^2$ subject to $x^2 + 2y^2 + 3z^2 = 1$. (7M)
 - b) Prove that the functions $u = x^2 e^{-y} \cosh z$, $v = x^2 e^{-y} \sinh z$ and $w = 3x^4 e^{-2y}$ are (7M) functionally dependent and hence find the relation between them.
- 6. a) Find partial differential equation by eliminating arbitrary function (7M) $z = f(x^2 - y) + g(x^2 + y)$
 - b) Solve the PDE $q^2 = z^2 p^2 (1-p^2)$ (7M)
- 7. a) Solve the PDE $(D^2 DD^1 2D)z = \sin(3x + 4y)$ (7M)

b) Solve the PDE
$$(D+D^1-1)(D+2D^1-3)z = 4+3x+6y$$
 (7M)

["]"["]"]" www.manaresults.co.in