

I B. Tech I Semester Supplementary Examinations, April - 2022 MATHEMATICS-II (NM&CV) (Com to ECE, EIE, ECom E)

Time: 3 hours

Max. Marks: 70

Note:	1. Question Paper consists of two parts (Part-A and Part-B)
	2. Answer ALL the question in Part-A
	3. Answer any FOUR Questions from Part-B

PART -A

1.	a)	Find two approximations of $f(x) = x^3 - x^2 + 1 = 0$ using False position method	(2M)
	b)	Prove that $E = \Delta - 1$	(2M)
	c)	Evaluate y(0.1) for $\frac{dy}{dx} = xy + 1$, $y(0) = 1$ using Euler's method	(2M)
	d)	Is the function $f(z) = xy + iy$ is analytic	(2M)
	e)	Define Radius of convergence	(2M)
	f)	Find the Poles $f(z) = tanz$	(2M)
	g)	Identify the singularity of $e^{\frac{1}{z}}$ at $z = 0$	(2M)

PART -B

2.	a)	Solve $x = cosx$ by iteration method	(7M)

b) Solve $x^2 - 2x + 5 = 0$ by bisection method (7M)

3. a) Find $y(1.5)$ using Newton's forward difference formula from the table	(7	7N	V	1))
--	----	----	---	---	---	---

Х	1	2	3	4
Y	200	222	325	460

b) Find the polynomial from the following data using Lagrange's interpolation formula (7M)

Х	1	2	4	7
у	1	2	4	6

1 of 2

["]]"["]["]] www.manaresults.co.in

R16

SET - 1

- 4. a) Find the solution of $y' = x^2 y$, y(1)=1 at x=1.5, 2.0 using Taylor's series method (7M) b) Find the solution of $\frac{dy}{dx} = 3x + y^2$, y(0) = 1, at x=0.5 using RK method of second (7M)
- 5. a) Construct analytical function whose real part is $u = x^2 y^2 y$ (7M)
 - b) Define analyticity of a complex function at a point P and in a domain D. Prove that the real and imaginary parts of an analytic function satisfy Cauchy – Riemann
 (7M) Equations.

6. a) Evaluate
$$\int_{c} \left[\frac{e^{z}}{z^{3}} + \frac{z^{4}}{(z+i)^{2}} \right] dz$$
 where c: $|z| = 2$ using Cauchy's integral formula (7M)

b) Expand
$$\frac{1}{(z^2 - 3z + 2)}$$
 in the region (i) $0 < |z - 1| < 1$ (ii) $1 < |z| < 2$ using (7M)
Learent's series

Laurent's series

order method.

7. a) Show that
$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos\theta} = \frac{2\pi}{\sqrt{3}}$$
 (7M)

b) Evaluate
$$\oint \frac{zdz}{(z-1)^2}$$
 Where c :|z| = 2 using Cauchy's Residue theorem (7M)

2 of 2

["]"["]"]"] www.manaresults.co.in