I B. Tech I Semester Supplementary Examinations, May - 2018 MATHEMATICS-II (NM&CV)

(Com to ECE, EIE, ECom E)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer **ALL** the questions in **Part-A**
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

1. a) Find the $\sqrt{15}$ using Bisection method.

(2M)

b) Construct the difference table for the following data.

(2M)

X	0	5	10	15
у	2	10	23	29

c) Evaluate $\int_{0}^{1} x^{2} dx$ using Trapezoidal Rule (taking n = 5).

(2M)

d) Show that the function f(z)=z is continuous.

(2M)

e) If C is a simple closed curve then evaluate $\int_C (\sin 3z + z^4 + e^z) dz$

(2M)

f) Determine the poles of $f(z) = \frac{z^2}{z^4 + 1}$

(2M)

g) Find the singularity of $f(z) = \frac{\sin(z-2)}{z-2}$ at z = 2.

(2M)

PART -B

2. a) Find the root of the equation $x^3 - x - 4 = 0$ using False position method.

(7M)

b) Find the root of the equation $e^x \sin x = 1$ using Newton Raphson method.

(7M)

- 3. a) Given that $\sin 45^{\circ} = 0.7077$, $\sin 50^{\circ} = 0.766$, $\sin 55^{\circ} = 0.8192$, $\sin 60^{\circ} = 0.866$ find (7M) $\sin 48^{\circ}$ using Newton's forward difference formula.
 - b) Using Gauss Forward difference formula find y(8) from the following table.

(7M)

	0	5	10	15	20	25
Y	7	11	14	18	24	32

- 4. a) Evaluate $\int_{0}^{\frac{1}{2}} \frac{dx}{\sqrt{1-x^2}}$ by (i) simpson's $1/3^{\text{rd}}$ rule (iii) Simpson's $3/8^{\text{th}}$ Rule. (7M)
 - b) Solve $\frac{dy}{dx} = xy$ using Modified Euler's method for x=1.1 given y (1)=1 (7M)

5. a) Prove that $f^{l}(z)$ does not exist at z=0 if

(7M)

$$f(z) = \begin{cases} \frac{x^3 y(y - ix)}{x^6 + y^2} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

- Determine analytic function whose real part is $u = \frac{Sin2x}{Cosh2y Cos2x}$ (7M)
- (7M)
- 6. a) Evaluate $\int_{\mathbb{C}} \frac{e^2}{(z^2 + \pi^2)^2} dz$ where \mathbb{C} : |z| = 4 using Cauchy's integral formula. b) Expand $f(z) = \frac{1}{z(z^2 3z + 2)}$ in 0 < |z| < 1 using Laurent's expansion. (7M)
- 7. a) Evaluate $\oint_C \frac{\tan z}{z^2 1} dz$ Where c : |z| = 1.5 by Cauchy's Residue theorem. (7M)
 - b) Evaluate $\int_{0}^{2\pi} \frac{\cos n\theta}{1 + a^2 + 2a\cos\theta} d\theta$ where n is a positive integer 0 < a < 1(7M)