

I B. Tech I Semester Regular/Supplementary Examinations, Nov/Dec - 2017 MATHEMATICS-II (NM&CV)

(Com. to ECE, EIE, E Com E)

Time: 3 hours

Max. Marks: 70

(7M)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1.	a)	Define algebraic equation with suitable example.					(2M)		
	b)	Define shift operator.							(2M)
	c)	Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ using Trapezoidal Rule.							(2M)
	d)	Show that $f(z) = xy + zy +$	+ <i>iy</i> is	everywh	ere conti	inuous.			(2M)
	e)	Define Harmonic fund	ction	with an e	example.				(2M)
	f)	Identify the singularity	ty of	$f(z) = \frac{2}{3}$	$\frac{\sin z}{2}$ at z	= 0.			(2M)
	g)	Evaluate $\int_0^{3+i} z^2 dz$ along the line $y = \frac{x}{3}$.						(2M)	
		PART -B							
2.	a)	Solve $2x - \log_{10} x = 7$	by ite	ration me	ethod.				(7M)
	b)	Solve $x^3-x+11=0$ by	bisec	tion metl	nod.				(7M)
3.	a)	Find y(2.4) using Newton's Backward difference formula from the table.					(7M)		
			Х	1	1.4	1.8	2.2		
		-	Y	3.49	4.82	5.91	6.5		

b) Find the y(4) from the following data.

Х	0	1	2	5
у	2	3	12	147

4. a) Find the solution of $\frac{dy}{dx} = x - y$, y(0)=1at x=0.1,0.2 using Taylor's series method. (7M) b) Find the solution of $\frac{dy}{dx} = x^2 - y$, y(0)=1at x=0.1,0.2 using Modified series method. (7M)

5. a) Prove that $f(z) = |z|^2$ is differentiable only at origin. (7M)

- b) Check $U(x, y) = e^{-x} (x \sin y y \cos y)$ is harmonic or not. If harmonic find its (7M) conjugate.
- 6. a) If $f(a) = \int_c \frac{4z^2 + z + 5}{z a} dz$ where c is the ellipse $x = 2\cos\theta$, $y = 3\sin\theta$ find the values (7M) of (a) f(3.5) (b) f(i).

b) Expand
$$\frac{\sin z}{z-\pi}$$
 at $z = \pi$ as a Taylor's series. (7M)

7. a) Evaluate
$$\int_{0}^{\infty} \frac{x \sin mx}{(16+x^4)} dx$$
 (7M)

b) Evaluate
$$\oint_C \frac{2e^z}{z(z-3)} dz$$
 Where c : $|z| = 2$ by Residue theorem (7M)

2 of 2

I B. Tech I Semester Regular/Supplementary Examinations, Nov/Dec - 2017 MATHEMATICS-II (MM&CV)

(Com. to ECE, EIE, E Com E)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART –A

1.	a)	Define Transcender	tal equ	ation wi	th suitabl	le exam	ple.		(2M)
	b)	Define average open	ator.						(2M)
	c)	Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ us	ing Tr	apezoida	l Rule.				(2M)
	d)	Show that the function							(2M)
	e)	Prove that $f(z) = z$	² is an	alytic.					(2M)
	f)	Identify the singular	ity of	f(z) =	$e^{1/z}$ at z	z = 0.			(2M)
	g)	Evaluate $\int_{(0,0)}^{(1,1)} [3x^2]$	+ 5v -	+ i(x ² –	v^2)] dz	along	$v^2 = x$.		(2M)
		⁹ (0,0) ¹	2	×	PART				
2.	a)	Solve $2x - \log_{10} x = 7$	by N	ewton Ra	aphson r	nethod			(7M)
	b)	Solve $x^3-x+11=0$ b	y False	e position	n method	1.			(7M)
3.	a)	Find y(1.5) using G	auss B	ackward	differen	ce form	ula from th	e table.	(7M)
			Х	1	1.4	1.8	2.2		
			Y	3.49	4.82	5.91	6.5		
	b)	Find the $y(3)$ from	the fo	llowing	data.			I	(7M)
		X	0		1		2	6	
		У	2		3		12	147	
4.	a)	Find the solution of	$\frac{dy}{dx} =$	x-y, y((0)=1 at x	x=0.1, ().2 using Pi	card's method.	(7M)

b) Find the solution of $\frac{dy}{dx} = x^2 - y$, y(0)=1 at x=0.1, 0.2 using RK method of fourth (7M) order.

Code No: R161110

5. a) If
$$f(z) = u(r,\theta) + iv(r,\theta)$$
 is differentiable at $z = re^{i\theta} \neq 0$ then prove that (7M)
 $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

b) Show that
$$u(x, y) = e^{-2xy} \sin(x^2 - y^2)$$
 is harmonic, find its conjugate. (7M)

6. a) Evaluate
$$\int_c \frac{z^2 - z + 1}{z - 1} dz$$
 where c is (i) $|z| = 1$ (ii) $|z| = \frac{1}{2}$ using Cauchy's integral (7M) formula.

b) Expand
$$f(z) = \frac{1}{z^2 - 3z + 2}$$
 in the region
(i) $0 < |z + 1| < 1$ (ii) $1 < |z| < 2$ (7M)

7. a) Evaluate
$$\oint_c \frac{dz}{\sinh z}$$
, where C is the Circle $|z| = 4$. using residue theorem. (7M)

b) Show by the method of Contour integration that (7M) $\int_{0}^{\infty} \frac{\cos mx}{\left(a^{2} + x^{2}\right)^{2}} dx = \frac{\pi}{4a^{3}} (l + ma)e^{imx} (a > 0)$

2 of 2

3. a)

order

Х

1 of 2

Y

Evaluate $\int_0^{1+i} (x^2 - iy) dx$ along the paths y = x.

PART -B

- d) Find $Lt_{z \to 0} \frac{x^2 y}{x^4 + v^2}$ (2M) e) Show that $f(z) = \overline{z}$ is now here analytic.
 - f) (2M)
 - g) Find the Residue of $f(z) = \frac{\sin z}{z \cos z}$ at z = 0. (2M)

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B

PART -A

MATHEMATICS-II (MM&CV) (Com. to ECE, EIE, E Com E) Max. Marks: 70

Time: 3 hours

I B. Tech I Semester Regular/Supplementary Examinations, Nov/Dec - 2017

3 5 6 8 2 1.5 2.4 4 5.6

b) Evaluate y(7) from the following table.

Find f(1.75) if f(1.7) = 5.474, f(1.8) = 6.050, f(1.9) = 6.686, f(2) = 7.389

4.	a)	Find the solution of	$\frac{dy}{dx} = x - y$, y(0)=1at x=0.1,0.2 using RK method of fourth	(7M)

b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^4}$ using (i) Simpson's 1/3rd Rule (i) Simpson's 3/8th Rule (7M)

1. a) Define quadratic convergence.

c) Write the merits of Euler's method.

2. a) Solve $xe^x = 2$ by Bisection method.

b) Solve $x^3-5x+1=0$ by Newton Raphson method.

b) Prove that $\Delta \nabla = \nabla \Delta$

SET - 3

(2M)

(2M)

(2M)

(2M)

(7M)

(7M)

(7M)

(7M)

Code No: R161110

5. a) Show that
$$f(z) = \begin{cases} \frac{(x^3 + y^3) + i(x^3 + y^3)}{x^2 + y^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$
 is not analytic at $z = 0$ although the (7M)

C-R equations are satisfied at the origin.

b) Determine analytic function whose real part
$$u = e^{x^2 - y^2} \cos 2xy$$
 (7M)

6. a) Using Cauchy's Integral formula evaluate (7M)

$$\int_{c} \frac{z^{4}}{(z+1)(z-i)^{2}} dz \text{ where } c \text{ is the ellipse } 9x^{2} + 4y^{2} = 36$$

b) Find the Laurent's series of
$$f(z) = \frac{1}{z^2 - 4z + 3}$$
 for (7M)
(i)1 < |z| < 3 (ii) |z| > 3

7. a) Evaluate
$$\oint_C e^{\frac{-1}{z}} \sin \frac{1}{z} dz$$
 where C: $|z| = 1$ using Cauchy's residue theorem. (7M)

b) Evaluate by Contour integration
$$\int_{0}^{\infty} \frac{dx}{1+x^2}$$
 (7M)

|"|"||"||"|||

1"1"11"11"111

I B. Tech I Semester Regular/Supplementary Examinations, Nov/Dec - 2017 MATHEMATICS-II (NM&CV)

(Com. to ECE, EIE, E Com E)

Time: 3 hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B

PART -A

1. a) Define order of convergence. (2M) b) Find $\Delta^2(x^2)$ if h = 1. (2M) c) Write the working procedure to solve the ODE by second order RK method. (2M) d) Find $Lt_{z \to 1} \frac{x^2 - y^2}{x^2 + y^2}$ (2M) e) Evaluate $\int_0^{1+i} (x^2 + iy) dz$ along the paths y = x. (2M) If C is a simple closed curve then Evaluate $\int_C (\sin 3z + z^4 + e^z) dz$. f) (2M) Find the Residue of. $f(z) = \frac{e^{z^2}}{z^3}$ at z = 0. (2M) g)

PART -B

2.	a)	Solve $xe^x = 2$ by False position method.		
	b)	Solve $x^3-5x+1=0$ by Iteration method.	(7M)	

3. a) Fit a y(0.5) from the following data.

X	-1	0	1	2
У	10	5	8	10

b) Find the y(4) for the following data.

Х	0	2	3	6
У	707	819	866	966

4. a) Find the solution of $\frac{dy}{dx} = x - y$, y(0)=1at x=0.1,0.2 using modified Euler's method. (7M) b) Evaluate $\int_{-1}^{1} \frac{dx}{1+x^3}$ using (i) Simpson's 1/3rd Rule (i) Simpson's 3/8th Rule. (7M)

Max. Marks: 70

Code No: R161110

(7M)

(7M)

Code No: R161110

(R16)

5. a) Find analytic function whose Real part $u(x, y) = x^3 - 3xy^2 + 3x^2 - 3y^2 + 2x + 1$ (7M)

b) If f(z) is an analytic function show that (7M)

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left|\operatorname{Re} f(z)\right|^2 = 2\left|f^1(z)\right|^2$$

6. a) Obtain the Taylor's series expansion $f(z) = \frac{2z^3+1}{z^2+z}$ about z = i. (7M)

b) Evaluate
$$\oint_c \frac{\cos \pi z}{z^2 - 1} dz$$
 along the rectangle with vertices $2 \pm i$, $-2 \pm i$. (7M)

7. a) Evaluate
$$\oint_C \frac{Coth z}{z-1} dz$$
 Where c : $|z| = 2$ using Cauchy's residue theorem. (7M)

b) Show that by the method of Residues
$$\int_{0}^{\pi} \frac{d\theta}{a+b\cos\theta} = \frac{\pi}{\sqrt{a^2 - b^2}} (a > b > 0)$$
(7M)