

I B. Tech I Semester Supplementary Examinations, December - 2021 MATHEMATICS-II (NM&CV) (Com to ECE, EIE, E Com E)

(Cor Time: 3 hours

Max. Marks: 70

		Time. 5 nouis						IVIAX. IVIAIKS. /	0
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B 							
		~~~~~	~~~~	~~~~~~	<u>PART -</u>	<u>-A</u>	~~~~~	~~~~~	
1.	a)	Write Newton Raphson formula to find the root of an equation.							(2M)
	b)	Define average operator.							(2M)
	c)	Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ using Trapezoidal Rule.							(2M)
	d)	Find $Lt_{z\to 0} \frac{(x^2 + y^2)}{x + y}$ .							(2M)
	e)	Prove that $f(z) = z^2$ is analytic							(2NI)
	f)	Define isolated singularity and given an example							(2M)
	g)	) $\frac{1}{2}$							(2M)
	6)	Find the residue of	of $e^z$ of	z = 0	PART	- <u>B</u>			(2M)
2.	a)	Solve $e^{-x} = x$ by Bisection method. Solve $x \log_{10} x = 1.2$ by False position method.							(7M)
	b)								(7M)
3.	a)	Find y(1.1) using Newton Forward difference formula from the table							(7M)
			Х	1	1.2	1.4	1.6		
			Y	3.49	4.82	5.91	6.5		
	b)	b) Find the v(3) from the following data							
		X		0	1	2		4	(7M)
		у		2	3	12	2	14	
4.	a)	Find the solution of $\frac{dy}{dx} = x + y$ , y(0)=1at x=0.1using Picard's method							(7M)
	b)	Find the solution of $\frac{dy}{dx} = x^2 + y$ , y(0)=1at x=0.1using Runge-Kutta method of							(7M)
5	2)	fourth order.	<b>.</b>			<i>.</i>	r		
5.	a)	Find the analytic function $f(z) = u + iv$ where $v(x, y) = e^x \cos y$ . (7N Show that $f(z) = \sqrt{ xy }$ is not analytic at $z = 0$ although the C-R equations are satisfied at the origin. (7N							(7M)
	D)								(7M)

1 of 2

## ["]]"["]["]] www.manaresults.co.in

6. a) Evaluate 
$$\int_{(1,1)}^{(2,4)} (x^2 + ixy) dz a long the curve x = t, y = t^2.$$
 (7M)

b) Evaluate  $\int_c \frac{ze^z}{(z-a)^3} dz$  where 'a' lies within a closed curve by Cauchy integral (7M) formula.

7. a) Evaluate 
$$\oint_C \frac{2e^z}{z(z-3)} dz$$
 Where c :  $|z| = 2$  by Residue theorem. (7M)

b) Show by the method of Contour integration Evaluate  $\int_{0}^{\infty} \frac{\cos mx}{(x-a)} dx$  (7M)

2 of 2