

I B. Tech II Semester Supplementary Examinations, January/February - 2023 MATHEMATICS-II (Mathematical Methods)

(Common to AE, AME, Bio-Tech, Chem E, CE, EEE, ME, Metal E, Min E, PCE, PE)

Time:	3	hours
-------	---	-------

Max. Marks: 70

<i>Note: 1. Question Paper consists of two parts (Part-A and Part-B)</i>
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

## PART -A (14 Marks)

1.	b) c)	Find the interval of existence of equation $log_e x = cosx$ . Find the half range sine series of $f(x) = 1$ in $[0,\pi]$ . Find the finite Fourier sine transform $f(x) = 1$ in $[0,2]$ . Find $\Delta(tan^{-1}x)$ if $h = 1$ . Find y (0.1) given that by Euler's method $\frac{dy}{dx} = x + 2y$ , $y(0) = 1$ . Write the merits of modified Euler's theorem. Write one dimensional Wave equation.	[2M] [2M] [2M] [2M] [2M] [2M] [2M]	
<u>PART –B (56 Marks)</u>				
2.		Find the Real root of $xtanx + 1 = 0$ using False position method. Evaluate $x^3 + 2x^2 + 0.4 = 0$ using Newton Raphson method.	[7M] [7M]	
3.	a)	Find $f(21)$ if $f(17) = 5.474$ , $f(18) = 6.050$ , $f(19) = 6.686$ , $f(20) = 7.389$ using Newton Backward interpolation formula.	[7M]	
	b)	Evaluate $y(x)$ from the following table. $x$ 0134 $y$ 2345	[7M]	
4.	a)	Evaluate $\int_0^{\pi} x sinx dx$ using Trapezoidal Rule.	[7M]	
		Using Picard's method find y(0.1), y(0.2) given that $\frac{dy}{dx} = x - y$ , y(0) = 2.	[7M]	
5.	a)	Find the Fourier series of $f(x) =  x $ in $(-\pi, \pi)$	[7M]	
	b)	Find the Half range cosine series of $f(x) = \cos\left(\frac{\pi x}{l}\right), 0 < x < l$	[7M]	
6.	a)	Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u(x, 0) = 0, \frac{\partial u}{\partial t}(0, t) = 0$	[7M]	
	b)	Find the temperature in a bar of length 1 which is perfectly insulated laterally and whose ends O and A are kept at $0^0$ C given that the initial temperature at any point P of the rod is given by $f(x)$ .	[7M]	
7.	a)	Find the Fourier Cosine transform of $f(x)$ defined by $f(x) = \frac{1}{x}$	[7M]	

b) Find the Fourier transform of f(x) defend by  $f(x) = \begin{cases} x^2 & if |x| < 1\\ 0 & if |x| > 1 \end{cases}$  [7M]

##