SET - 1
I B. Tech II Semester Supplementary Examinations, January/February - 2023 MATHEMATICS-II (Mathematical Methods)
(Common to AE, AME, Bio-Tech, Chem E, CE, EEE, ME, Metal E, Min E, PCE, PE)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A (14 Marks)

1. a) Find the interval of existence of equation $\log _{e} x=\cos x$.
b) Find the half range sine series of $f(x)=1$ in $[0, \pi]$.
c) Find the finite Fourier sine transform $\mathrm{f}(\mathrm{x})=1$ in $[0,2]$.
d) Find $\Delta\left(\tan ^{-1} x\right)$ if $\mathrm{h}=1$.
e) Find $y(0.1)$ given that by Euler's method $\frac{d y}{d x}=x+2 y, y(0)=1$.
f) Write the merits of modified Euler's theorem.
g) Write one dimensional Wave equation.

PART -B (56 Marks)

2. a) Find the Real root of $x \tan x+1=0$ using False position method.
b) Evaluate $x^{3}+2 x^{2}+0.4=0$ using Newton Raphson method.
3. a) Find $f(21)$ if $f(17)=5.474, f(18)=6.050, f(19)=6.686, f(20)=7.389$ using Newton Backward interpolation formula.
b) Evaluate $y(x)$ from the following table.

x	0	1	3	4
y	2	3	4	5

4. a) Evaluate $\int_{0}^{\pi} x \sin x d x$ using Trapezoidal Rule.
b) Using Picard's method find $\mathrm{y}(0.1), \mathrm{y}(0.2)$ given that $\frac{d y}{d x}=x-y, y(0)=2$.
5. a) Find the Fourier series of $f(x)=|x|$ in $(-\pi, \pi)$
b) Find the Half range cosine series of $f(x)=\cos \left(\frac{\pi x}{l}\right), 0<x<l$
6. a) Solve $\frac{\partial^{2} u}{\partial x \partial t}=e^{-t} \cos x$ given that $u(x, 0)=0, \frac{\partial u}{\partial t}(0, t)=0$
b) Find the temperature in a bar of length 1 which is perfectly insulated laterally and whose ends O and A are kept at $0^{0} \mathrm{C}$ given that the initial temperature at any point P of the rod is given by $f(x)$.
7. a) Find the Fourier Cosine transform of $f(x)$ defined by $f(x)=\frac{1}{x}$
b) Find the Fourier transform of $f(x)$ defend by $f(x)=\left\{\begin{array}{lc}x^{2} & \text { if }|x|<1 \\ 0 & \text { if }|x|>1\end{array}\right.$
