

## II B. Tech I Semester Supplementary Examinations, Oct/Nov - 2016 MATHEMATICS - III (Com. to CE, CHEM, BT, PE)

| Time: 3 hours |          |                                                                                                                                          | Max. Marks: 75 |  |
|---------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
|               |          | Answer any FIVE Questions<br>All Questions carry Equal Marks                                                                             |                |  |
| 1.            | a)<br>b) | State and prove orthogonal property of Bessel's function<br>Express $x - \frac{5}{3}x^3$ as Legendre's polynomial                        | (8M)<br>(7M)   |  |
| 2.            | a)       | Find 'k' such that $f(x, y) = x^3 + 3kxy^2$ is harmonic and find its harmonic                                                            | (8M)           |  |
|               | b)       | conjugate<br>Prove that $f(z)$ = sinz is analytic everywhere in the complex plane and also<br>find $f^{1}(z)$                            | (7M)           |  |
| 3.            | a)<br>b) | Find all the roots of $\cos z = \frac{1}{2}$<br>Find real and imaginary parts of tanz                                                    | (8M)<br>(7M)   |  |
| 4.            | a)       | Evaluate $\int_{(11)}^{(2,4)} z^2 dz$ along the parabola x = t, y = t <sup>2</sup>                                                       | (8M)           |  |
|               | b)       | Evaluate $\int_{c}^{(1,1)} \frac{z^2 - 1}{(z^2 + 1)} dz$ along $c :  z - i  = 1$                                                         | (7M)           |  |
| 5.            | a)       | Expand $f(z) = \frac{z}{z^2 + 1}$ about $ z - 3i  > 2$ by Laurent's series                                                               | (8M)           |  |
|               | b)       | Find the zeros and poles of (i) $f(z) = e^{\tan z}$ (ii) $f(z) = (z-1)^3$                                                                | (7M)           |  |
| 6.            | a)       | Evaluate $\int \frac{2z-1}{z(z+2)(2z+1)} dz$ around $c:  z  = 2$ by Residue theorem                                                      | (8M)           |  |
|               | b)       | Evaluate $\int_{0}^{2\pi} \frac{d\theta}{(a+b\cos\theta)}$ by Residue theorem                                                            | (7M)           |  |
| 7.            | a)<br>b) | State and prove Maximum Modulus principle.<br>Use Rouche's theorem, find the number of zero's of $z^{10}-6z^7+3z^3+1$                    | (8M)<br>(7M)   |  |
| 8.            | a)<br>b) | Discuss the transformation $w = \cosh z$<br>Find the image of the strip $0 < y < \frac{1}{2}$ under the transformation $w = 1/z$<br>**** | (8M)<br>(7M)   |  |

## WWW.MANARESULTS.CO.IN

|"|""||"|||