Code No: RT31041

1

2

3

4

5

6

III B.Tech I Semester Supplementary Examinations, October/November - 2019

PULSE AND DIGITAL CIRCUITS		
(Common to Electronics and Communication Engineering, Electronics and		
	Instrumentation Engineering)	
Tim	ne: 3 hours M	ax. Marks: 70
	Note: 1. Question Paper consists of two parts (Part-A and Part-B)	
	2. Answering the question in Part-A is compulsory	
	3. Answer any THREE Questions from Part-B	
	PART –A	(22 Marks)
a)	Define Linear Wave Shaping.	[4M]
b)	Justify that a clamping circuit is a dc inserter.	[3M]
c)	Define rise time and transition time of a diode.	[4M]
d)	What is hysteresis? how it can be eliminated in a Schmitt trigger?	[3M]
e)	What are the general features of a time base signal?	[4M]
f)	Name some negative resistance devices used as relaxation Oscillator.	[4M]
	<u>PART – B</u>	(48 Marks)
a)	Explain the operation of attenuators.	[5M]
b)	A symmetrical square wave of peak to peak amplitude V and frequency f is app	lied [8M]
	to a high pass RC circuit. Find the percentage tilt.	
c)	What is Ringing circuit?	[3M]
a)	Explain transfer characteristics of the emitter coupled clipper.	[4M]
b)	Draw the basic circuit diagram of positive peak clamper circuit and explain	ı its [8M]
	operation.	545 (7
c)	What do you mean by compensation? Explain in detail.	[4M]
a)	What are the saturation parameters of transistor and explain their variation v	with [8M]
1)	respect to temperature.	([O]) (I
D)	and operating currents	ters [81vi]
a)	Explain the principle of operation of Monostable multivibrators	[8M]
h)	Design a collector coupled Mono stable for the following specifications: Land	and [8M]
0)	voltage drops across saturated transistors are negligible. For the transis	and [olvi]
	$h_{FF (min)}=20$, and the base-emitter cutoff voltage for the normally OFF transiston	or is
	-1 V. The base drive to the transistor in saturation is 50% in excess of minin	num
	required. Collector supply voltage is 6V and collector current=2 mA the delay t	ime
	is 3000 µsec. Choose $R_1=R_2$. Find R_C , R, R_1 , C and V_{BB} .	
8) 8	Define and derive the terms slope error displacement error and transmission err	or [8M]
a) b)	Explain the working of a Miller sween circuit and derive expression for the sl	lope [8M]
-,	sweep error.	I - [011]
``		

- 7 With a neat circuit, explain a method of compensation used to improve the linearity a) [8M] of a bootstrap time base circuit.
 - b) Explain the principle of "synchronization" and synchronization with frequency [8M] division.
