Code No: RT31041 **SET - 1 R13**

III B. Tech I Semester Regular/Supplementary Examinations, October/November- 2017 PULSE AND DIGITAL CIRCUITS

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A** is compulsory

3. Answer any THREE Questions from Part-B

	<u>PART –A</u>					
1	a)	Determine the upper 3-dB frequency for low pass RC circuit, if a pulse of 0.5μ sec is required to pass without distortion. Find the value of resistance if the capacitor is 0.001μ F.	[4M]			
	b)	Draw the diode based negative clipper and draw its waveforms	[3M]			
	c)	Give the Comparison of various logic families	[4M]			
	d)	Draw and explain the fixed bias transistor bistable multivibrator	[3M]			
	e)	Draw the constant current sweep circuit and explain	[4M]			
	f)	Explain the principle of synchronization with frequency division	[4M]			
	<u>PART –B</u>					
2	a)	Explain clearly with the help of a circuit and waveforms the response of high pass RC circuit for step and pulse input	[8M]			
	b)	Explain (i) the working of attenuator as a CRO Probe ii) Ringing circuit	[8M]			
3	a) b)	Compare and contrast series diode clipper and shunt diode clipper In a shunt clipper circuit $v_{in}{=}20~sin~wt$, R=1K Ω , and V _R =10V is obtained from a potential divider circuit using 100 V supply and 10 K Ω potential divider. i) Draw the circuit ii) If R _f = 50 Ω and R _r = ∞ and V _{γ} = 0, Sketch the input and output	[8M]			
		waveforms.				
4	a)	Explain how transistor acts as a switch? Draw the base and collector waveforms by indicating all the time intervals.	[8M]			
	b)	Realize a two-input NAND gate using diode transistor logic and explain its operation with the help of truth table.	[8M]			
5	a)	Design a collector-coupled monostable multivibrator using an n-p-n silicon transistor with $h_{FE(min)} = 40$, $V_{BE (cut off)} \approx 0$ V and $I_{B(sat)} = 1.5I_{B(min)}$. Given that: $V_{CC} = 10$ V, $I_{C(sat)} = 5$ mA, $R_{C1} = R_{C2} = R_C$, $V_{CE(sat)} = 0.2$ V and $V_{BE(sat)} = 0.7$ V. If the pulse width required is 1 ms, calculate the value of C.	[8M]			
	b)	Derive expression for the pulse width of a monostable multivibrator	[8M]			

1 of 2 WWW.MANARESULTS.CO.IN

- 6 a) Explain the basic principle of a bootstrap sweep generator. Draw the circuit [8M] and explain its operation. Derive the expression for its slope error.
 - b) Design a relaxation oscillator to have 5kHz output frequency using a UJT and a 20 V power supply. Calculate the sweep amplitude. Given that η =0.7, Iv = 1.5 mA, I_P = 8 μ A and V_{EB(sat)} = 3 V
- 7 a) Explain how the loading of the control signal is reduced when the number of [8M] inputs increases in a sampling gate.
 - b) How to cancel the pedestal in a sampling gate? Discuss with suitable circuit [8M] diagram.

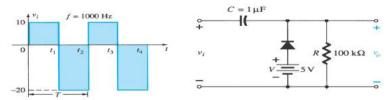
III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2017 PULSE AND DIGITAL CIRCUITS

SET - 2

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

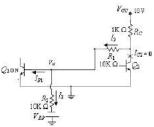
Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)


- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any **THREE** Questions from **Part-B**

PART -A

- a) For a high pass RC circuit it is desired to pass a 5 m sec sweep for a ramp input, with less than 0.5% transmission error. Determine the highest possible value of the lower 3-dB frequency.
 - b) Draw the diode based positive clipper and draw its waveforms [4M]
 - c) Present the piecewise linear characteristics of a diode [3M]
 - d) Explain about commutating capacitors in bistable multi vibrator [4M]
 - e) Compare voltage and current time base generators [4M]
 - f) Define phase delay and phase jitter [4M]


PART -B

- 2 a) Explain the working of a piece- wise linear model of diode. [8M]
 - b) A two input NAND gate has Vcc=+5V and 1 KΩ load connected to its output? Calculate the output voltagei)When both input are Low ii)when both input are High.
- a) Draw the emitter coupled clipper, explain its operation and discuss its [8M] transfer characteristics.
 - b) Determine v_0 for the following circuit with the input shown and draw the output waveform (consider ideal diode). [8M]

- 4 a) Derive an expression for collector-to-emitter breakdown voltage, with open circuited base, BV_{CEO} in terms of collector-to-base breakdown voltage, with open circuited emitter, BV_{CBO}
 - b) Realize a three-input NAND gate using transistor transistor logic and explain its operation with the help of truth table. [8M]

5 a) For a collector-coupled monostable multivibrator circuit shown in Figure , $R_1 = R_2 = R = 10 \text{ k}\Omega, C = 0.01 \ \mu\text{F}, R_C = 1 \text{ k}\Omega, V_{CC} = 10 \text{ V}, h_{FE} = 20. \text{ In the quasi-stable state, } Q_1 \text{ is in the active region with collector current of 2 mA.}$ Find the time period and the value o V_{BB} . Neglect junction voltages. $I_{B(\text{sat})} = 1.5I_{B(\text{min})}.$

- b) Discuss the design of fixed bias bistable multivibrator. [8M]
- 6 a) With suitable diagram, explain the function of sweep circuit using UJT. [8M]
 - b) With neat circuit, explain about transistor miller time base generator. [8M]
- 7 a) Draw and explain with relevant waveforms the process of frequency division [8M] by an Astable multivibrator
 - b) Explain the function of a sampling gate used in Sampling Scopes also [8M] explain how sampling gate is used in chopping amplifiers.

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2017 PULSE AND DIGITAL CIRCUITS

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in **Part-A** is compulsory 3. Answer any **THREE** Questions from **Part-B** PART -A 1 a) For a low pass RC circuit it is desired to pass a 3 msec sweep for a ramp [4M] input, with less than 0.5% transmission error. Determine the highest possible value of the upper 3-dB frequency. b) Draw the diode based positive clamper and draw relevant waveforms [4M] c) Give the comparison between TTL and CMOS families [3M] Compare all the three multivibrators with corresponding circuits d) [4M] Why the time base generators are called as sweep circuits? [3M] Draw and explain the operating principle of bidirectional sampling gates [4M] PART-B 2 A symmetrical square wave of peak to peak amplitude V Volts and frequency [8M] f Hz is applied to a high pass RC circuit, show that the percentage tilt is given by $P = \frac{1 - e^{-1/2 fRC}}{1 + e^{-1/2 fRC}} \times 200\%$ Analyze the low pass RC circuit for the exponential input with help of [8M] waveforms. 3 Design a diode clamper to restore a dc level of +3 Volts to an input signal of [8M] peak to peak value 12 Volts. Assume the drop across diode as 0.7 Volts. Discuss in detail the effects of diode characteristics on clamping voltage. [8M] 4 Explain the saturation parameters of transistor and their variation with [8M] temperature A silicon transistor has h_{FE} =50, I_{CO} =0.1 μ A, the cut-in voltage V_{ν} =0.6V. The [8M] parameter 'n' of avalanche multiplication is 4 and BV_{CBO} =40V. i) Find BV_{CEO} ii) Find BV_{CER} if $R_B = 1M\Omega$ iii) Find BV_{CEX} , assume V_{BB} =20V and R_B =10 $K\Omega$ 5 Design a symmetric collector-coupled astable multivibrator to generate a [8M] square wave of 10 kHz having peak-to-peak amplitude of 10 V where, h_{FE}min = 30, $V_{CE(sat)}$ = 0.2 V, $I_{C(sat)}$ = 2 mA. b) Prove that an astable multivibrator works as voltage to frequency converter [8M]

Code No: RT31041 (R13) (SET - 3)

- 6 a) How can represent deviation from linearity in sweep circuits? Derive the relationamong possible errors in sweep circuits. [8M]
 - b) The specifications of UJT are given as η =0.6, Vv = 2 V, R_{BB} = 5 k Ω , Iv = 1.5 [8M] mA, I_P = 8 μ A and V_{BB} = 18 V. Calculate the component values of the UJT sweep circuit to generate an output sweep frequency of 10 kHz with sweep amplitude of 12 V.
- 7 a) Explain Synchronization of a sweep circuit with symmetrical signals
 b) Compare unidirectional and bidirectional sampling gates [8M]

Code No: RT31041

R13

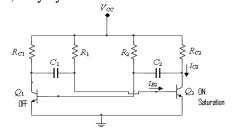
SET - 4

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2017 PULSE AND DIGITAL CIRCUITS

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)


- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any **THREE** Questions from **Part-B**

PART -A

1	a)	Show that the low pass RC circuit acts as an integrator	[3M]			
	b)	Draw the diode based negative clamper and draw relevant waveforms	[4M]			
	c)	Draw and explain the basic CMOS inverter circuit	[3M]			
	d)	Draw the Schmitt trigger circuit and discuss its operation	[4M]			
	e)	What are different methods of generating time base waveform	[4M]			
	f)	Compare sampling gates with logic gates	[4M]			
DADT D						

PART-B

- 2 a) A 2 KHz symmetric square wave of ±20 V is applied to a RC circuit having 2 msec. time constant. Calculate and plot the output to the scale for RC configuration as. i) High pass circuit ii) Low pass circuit.
 - b) Draw explain the RLC circuit that can generate nearly undamped oscillations [8M] and explain its working.
- 3 a) Draw the diode differentiator comparator and discuss its working with the [8M] help of ramp input signal
 - b) State and prove clamping circuit theorem. [8M]
- 4 a) With neat sketches and necessary equations, explain in detail about transistor [8M] switching times
 - b) Realize NAND and NOR gates using CMOS logic and explain their operation [8M] with the help of truth table.
- 5 a) Design an unsymmetrical astable multivibrator shown in Figure, using silicon [8M] n- p-n transistors having an output amplitude of 12 V. Given, $I_{C(sat)} = 5$ mA, $h_{FEmin} = 50$, f = 5 kHz, duty cycle = 0.6.

1 of 2

WWW.MANARESULTS.CO.IN

Code No: RT31041 (R13) (SET - 4)

- b) Calculate the component values of a monostable multivibrator using silicon *npn* transistors generating an output pulse of 150 µsec. duration. Given (h_{fe})_{min}=30, $I_{C}(sat)$ =6mA, V_{CC} =6V and V_{BB} = -1.5V. If r'_{bb} =100 Ω , find the magnitude of the overshoot.
- 6 a) Draw and explain the transistorized constant current sweep generator circuit. [8M] Derive expression for slope error and sweep voltage.
 - b) How a compensation circuit improves the linearity of a Bootstrap voltage time [8M] base generator? Discuss.
- 7 a) What is synchronization? Why it is necessary in waveform generators? [8M] Explain the synchronization of a sweep circuit with symmetrical signals.
 - b) Write an account of bidirectional diode based sampling gates [8M]
