Code No: RT31042

III B. Tech I Semester Supplementary Examinations, May - 2019 LINEAR IC APPLICATIONS

(Common to Electronics and Communication Engineering, Electronics and Instrumentation

Engineering, Electronics and Computer Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any **THREE** Questions from **Part-B**

PART –A

1.	a)	List the basic processes used in the silicon planer technology.	[3M]
	b)	Draw the equivalent circuit of an ideal OP-AMP.	[4M]
	c)	List the important features of an instrumentation amplifier.	[4M]
	d)	The resonant frequency f_0 of a band pass filter is 1khz and its bandwidth is 3 kHz. Find	[3M]
		the value of Q.	
	e)	Discuss the operation of a FSK generator using 555 timers.	[4M]
	f)	Explain about basic DAC technologies with schematic diagram.	[4M]
		PART -B	
2.		What is an integrator circuit? Discuss the relative advantages and disadvantages if IC'S	[16M]
		over discrete assembly. How will you make a monolithic IC explain in detail?	
3.	a)	Explain about input offset voltage with a neat diagram.	[8M]
	b)	Define Slew rate. How it effect the op-amp performance? Explain.	[8M]
	-)		[]
4.	a)	With a neat diagram explain about the voltage to current converter in details.	[8M]
	b)	Describe the working of practical differentiator circuit. Derive the expression for output	[8M]
		voltage.	
5.	a)	With a neat diagram explain the band reject filter. Derive the expression for output	[8M]
		voltage.	
	b)	Design a first order low pass filter for a high cut-off frequency of 2 kHz and pass band	[8M]
		gain of 2.	
6.		The free running frequency of a 565 PLL is 100 kHz, the filter capacitor is 2μ F and	[16M]
		supply voltage is \pm 6V. Compute the lock in range, capture range frequency and value of	
		external components R_T and C_T .	
7.	a)	With a neat diagram explain about the counter type A/D converter in detail.	[8M]
	b)	Determine the output voltages caused by each bit in a 6-bit ladder if the input levels are	[8M]
	,	0=0v and 1=+16v. Determine the resolution and full-scale output of this circuit. Find out	

the voltage from the above ladder for a digital input of 101011.

www.manaresults.co.in