# III B. Tech I Semester Supplementary Examinations, May - 2019 LINEAR IC APPLICATIONS 

(Common to Electronics and Communication Engineering, Electronics and Instrumentation Engineering, Electronics and Computer Engineering)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A

1. a) List the basic processes used in the silicon planer technology.
b) Draw the equivalent circuit of an ideal OP-AMP.
c) List the important features of an instrumentation amplifier.
d) The resonant frequency $f_{o}$ of a band pass filter is 1 khz and its bandwidth is 3 kHz . Find the value of Q .
e) Discuss the operation of a FSK generator using 555 timers.
f) Explain about basic DAC technologies with schematic diagram.

## PART -B

2. What is an integrator circuit? Discuss the relative advantages and disadvantages if IC'S over discrete assembly. How will you make a monolithic IC explain in detail?
3. a) Explain about input offset voltage with a neat diagram.
b) Define Slew rate. How it effect the op-amp performance? Explain.
4. a) With a neat diagram explain about the voltage to current converter in details.
b) Describe the working of practical differentiator circuit. Derive the expression for output voltage.
5. a) With a neat diagram explain the band reject filter. Derive the expression for output voltage.
b) Design a first order low pass filter for a high cut-off frequency of 2 kHz and pass band gain of 2 .
6. The free running frequency of a 565 PLL is 100 kHz , the filter capacitor is $2 \mu \mathrm{~F}$ and supply voltage is $\pm 6 \mathrm{~V}$. Compute the lock in range, capture range frequency and value of external components $\mathrm{R}_{\mathrm{T}}$ and $\mathrm{C}_{\mathrm{T}}$.
7. a) With a neat diagram explain about the counter type A/D converter in detail.
b) Determine the output voltages caused by each bit in a 6-bit ladder if the input levels are
$0=0 \mathrm{v}$ and $1=+16 \mathrm{v}$. Determine the resolution and full-scale output of this circuit. Find out the voltage from the above ladder for a digital input of 101011.
wWW.manaresults.co.in
