SET - 1

III B. Tech I Semester Supplementary Examinations, October/November - 2020 LINEAR IC APPLICATIONS

(Common to Electronics and Communication Engineering, Electronics and Instrumentation Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is compulsory
 3. Answer any THREE Questions from Part-B

PART -A
(22 Marks)

1. a) List the advantages of integrated circuits.
b) A differential dc amplifier has a differential mode gain of 100 and a common mode gain 0.01. What is its CMRR in dB ?
c) Draw the circuit of a summing operational amplifier using inverting amplifier configuration.
d) Determine the order of a low pass Butterworth filter that is to provide 40 dB attenuation at $\mathrm{W} / \mathrm{W}_{\mathrm{h}}=2$.
e) What is a VCO? Give two applications of VCO.
f) Which is the fastest ADC and why it is so?

PART -B

(48 Marks)
2. a) Differentiate between SSI, MSI, LSI and VLSI.
b) Explain planar technology for device fabrication.
3. a) Draw the block schematic of an op-amp and explain the functions of each block.
b) The two input terminals of an op-amp are connected to voltage signals of strength $745 \mu \mathrm{~V}$ and $740 \mu \mathrm{~V}$ respectively. The gain of the OP-AMP in differential mode is 5×10^{5} and its CMRR is 80 dB . Calculate the output voltage and percentage error due to common mode.
4. a) Explain how an op-amp can be used as integrator? Also derive expression for the output.
b) Design an instrumentation amplifier to have a variable differential gain in the range 5-200. Use a 50 kilo-ohm potentiometer.
5. a) Design a first order low pass filter for a high cut-off frequency of 2 kHz and Pass band gain of 2 .
b) Draw the circuit diagram of first order high pass filter and its frequency response. Derive the expression for output voltage.
6. a) Compute the free running frequency f_{o}, lock in range and capture range of PLL565. Assume $\mathrm{R}_{\mathrm{T}}=20 \mathrm{k}$-ohm, $\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{C}=1 \mu \mathrm{~F}$ and supply voltage is $\pm 6 \mathrm{v}$.
b) Draw and explain the circuit of astable multivibrator using 555 timer.
7. a) With a neat diagram explain the successive approximation converter in detail.
b) Consider a 10 bit D/A converter having a reference voltage of 10 V . What is the Binary digital input needed to get 4.5 V output? What outputs are obtained from the converter for the inputs of (i) binary 0010110101 (ii) decimal 520 ?

