III B. Tech I Semester Supplementary Examinations, October/November - 2019 LINEAR IC APPLICATIONS

(Common to Electronics and Communication Engineering, Electronics and Instrumentation Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A (22 Marks)

1. a) What is the significance of DC Coupling?
b) Define Slew Rate and give its ideal and practical values.
c) What are the applications of Comparators?
d) What is the relationship between order of a filter and roll off rate?
e) List the applications of VCO (566).
f) What are advantages and disadvantages of dual slope ADC?

PART - B (48 Marks)

2. a) Explain the fundamentals of Differential amplifier.
b) Draw the circuit diagram of differential amplifier with Single input and unbalanced output. Derive expressions for differential gain A_{d}, input resistance R_{i}, and output resistance R_{0}.
3. a) Explain the concept of Virtual Ground in detail.
b) For the circuit shown below; calculate I_{l}, I_{L} and V_{0} with $R_{l}=9 \mathrm{k} \Omega, R_{f}=50 \mathrm{k} \Omega$, $\quad[8 \mathrm{M}]$ $V_{i}=0.5 \mathrm{~V}, R_{L}=20 \mathrm{~K} \Omega$.

4. a) Find R_{1} and R_{f} in the lossy integrator so that the peak gain is 20 dB and gain is 3 dB down from its peak when $\omega=10,000 \mathrm{rad} / \mathrm{sec}$. use a capacitance of $0.01 \mu \mathrm{~F}$.
b) With a neat sketch explain the operation of Triangular generator.
5. a) Design a low pass filter with a cut off frequency of 1 kHz and with a pass band gain of 2 .
b) With a neat sketch explain the operation of Four Quadrant Multiplier.
6. a) Design a monostable multivibrator using 555 timer to produce a pulse width
[8M] of 100 m sec .
b) Derive the expressions for i) Lock in range. ii) Capture range.
7. a) Draw a weighted resistor DAC and obtain the transfer characteristics of a 3 bit DAC.
b) Draw and explain the circuit operation of Successive approximation ADC.
