III B. Tech I Semester Supplementary Examinations, October/November - 2019 LINEAR IC APPLICATIONS

SET - 1

(Common to Electronics and Communication Engineering,

Electronics and Instrumentation Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer **ALL** the question in **Part-A**
- 3. Answer any **THREE** Questions from **Part-B**

PART –A (22 Marks)

- 1. a) What is the significance of DC Coupling? [4M]
 - b) Define Slew Rate and give its ideal and practical values. [4M]
 - c) What are the applications of Comparators? [3M]
 - d) What is the relationship between order of a filter and roll off rate? [4M]
 - e) List the applications of VCO (566). [4M]
 - f) What are advantages and disadvantages of dual slope ADC? [3M]

PART –B (48 Marks)

- 2. a) Explain the fundamentals of Differential amplifier. [8M]
 - b) Draw the circuit diagram of differential amplifier with Single input and unbalanced output. Derive expressions for differential gain A_d , input resistance R_i , and output resistance R_o .
- 3. a) Explain the concept of Virtual Ground in detail. [8M]
 - b) For the circuit shown below; calculate I_I , I_L and V_0 with R_I =9 kΩ, R_f =50kΩ, [8M] V_i =0.5V, R_L = 20KΩ.

- 4. a) Find R_1 and R_f in the lossy integrator so that the peak gain is 20dB and gain is [8M] 3dB down from its peak when ω =10,000 rad/sec. use a capacitance of 0.01 μ F.
 - b) With a neat sketch explain the operation of Triangular generator. [8M]
- 5. a) Design a low pass filter with a cut off frequency of 1 kHz and with a pass band [8M] gain of 2.
 - b) With a neat sketch explain the operation of Four Quadrant Multiplier. [8M]
- 6. a) Design a monostable multivibrator using 555 timer to produce a pulse width [8M] of 100 m sec.
 - b) Derive the expressions for i) Lock in range. ii) Capture range. [8M]
- 7. a) Draw a weighted resistor DAC and obtain the transfer characteristics of a 3 bit [8M] DAC.
 - b) Draw and explain the circuit operation of Successive approximation ADC. [8M]
