

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 CONTROL SYSTEMS

(Comm to ECE and EIE)

 Time: 3 hours
 Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

(Normal and semi & polar graph sheet are the supplied)

PART -A

1	a)	Define a control system. Explain about open-loop and closed-loop control systems.	[3M]
	b)	Derive the transfer function of Armature controlled DC servo motor.	[4M]
	c)	Define the error constants Kp, Kv and Ka.	[4M]
	d)	Explain about the effects of adding zeroes to $G(s)H(s)$ on the root loci.	[3M]
	e)	Define various Frequency domain specifications	[4M]
	f)	Explain about Lead compensator.	[4M]
		PART -B	

2	a)	What are the effects of feedback on Sensitivity and external noise?	[8M]
	b)	Find transfer function $\theta(s)/T(s)$.	[8M]
		K ₄₀	

3 a) Explain related terms used in Mason's gain formula with examples. [8M] b) Draw the equivalent signal flow graph and determine $\frac{C(S)}{R(S)}$ using Mason's gain [8M]

4 a) Derive the response of a standard under damped second order system for unit step [8M] input.

b) A unity feed back system has an open-loop transfer function $G(S) = \frac{K}{S(S+10)}$. [8M]

Determine K so that the system will have a damping ratio 0.5. For this value of K, determine peak over shoot and time for peak over shoot for the unit step input.

1 of 2

WWW.MANARESULTS.CO.IN

|"|""||"|||

(R13)

$$\left(\text{SET} - 1 \right)$$

- 5 a) What are rules in construction of root loci? [6M]
 - b) For a unity feed back system with open loop transfer function [10M] $G(S)H(S) = \frac{K}{S(S+4)(S+6)}$ Find the range of K for which the system will be stable using RH – Criterion.
- 6 a) Find the Gain margin and phase margin of the system if the open loop transfer function [8M] is : $G(S) = \frac{10}{S(S+1)}$

b)

Draw the polar plot of G(S) H(S) = $\frac{K}{S(S+3)(S+5)}$ and there from determine [8M] range of K for stability using Nyquist Criterion.

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; \ t > 0$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Find the transfer function of the system. Compute the state transition matrix. Solve the state equation for the unit step input under zero initial conditions.

Note: SET-1 needs ordinary graph sheets.

2 of 2

WWW.MANARESULTS.CO.IN

|"|""||"||"||||

Time: 3 hours

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 CONTROL SYSTEMS

(Comm to ECE and EIE)

Max. Marks: 70

[8M]

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B
(Normal and semi & polar graph sheet are the supplied)

PART -A

1	a)	Write the advantages and disadvantages of open-loop and closed-loop control	[3M]
		systems.	
	b)	Explain about Mason's gain formula.	[4M]
	c)	Write short notes on steady state error.	[4M]
	d)	What are effects of adding poles to $G(s)H(s)$ on the root loci?	[3M]
	e)	Explain about Phase Margin and Gain Margin.	[4M]
	f)	What are the properties of State Transition Matrix?	[4M]
		PART -B	

2 a) Discuss the effect of feedback on Gain, Stability. [8M]

b) Determine the transfer function $\frac{X_2(S)}{F(S)}$. [8M]

- 3 a) Explain the construction and operation of AC servomotor . [8M]
 - b) Obtain the transfer function C(s)/R(s) by using Block diagram algebra.

WWW.MANARESULTS.CO.IN

|"|""||"|||

Code No: RT31043

- 4 a) Derive the expressions for peak time and settling time of a standard second order [8M] under damped system.
 - b) Determine the step, ramp & parabolic error constants for the following system with [8M] unity feedback. $G(s) = \frac{K}{s^2 (s+1)}$
- 5 a) Find the stability of the system whose characteristic equation is given by $P(s) = s^{6}+2s^{5}+8s^{4}+12s^{3}+20s^{2}+16s+16.$ [8M]
 - b) Sketch the root locus of the system whose open loop transfer function is [8M] $G(s)H(s) = \frac{k}{s(s+2)(s+4)}$ find the value of k for damping ratio of 0.5
- 6 a) The open loop transfer function of a unity feedback system is given by [16M] $\frac{10(s+3)}{s(s+2)(s^2+4s+100)}$ draw the bode plot, find the gain margin and phase margin and comment on stability by bode plot.
- 7 a) Diogonalize the system matrix, $A = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix}$ [8M]
 - b) Test the system represented by following equations is state controllable and [8M] observable.

 $\begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \end{bmatrix} u, y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Note: SET-2 needs ordinary graph sheets and semi-log graph sheets.

WWW.MANARESULTS.CO.IN

|"|""||"|||

Code No: RT31043

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 CONTROL SYSTEMS (Comm to ECE and EIE)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B
(Normal and semi & polar graph sheet are the supplied)

PART -A

	f)	Explain about Lag compensator.	[4M]
	e)	What is polar plot? Draw the polar plot of $G(s)=1/(1+ST)$	[4M]
	d)	What are limitations of Routh's stability criterion?	[3M]
	c)	Derive the response of a standard first order system for unit step input.	[4M]
	b)	Derive the transfer function for AC servomotor.	[4M]
1	a)	Compare the open-loop and closed-loop control systems.	[3M]

PART -B

- 2 a) Explain about the classification of control systems. [8M]
 - b) Obtain the transfer functions *E*o(s)/*E*i(s) of the bridged T network [8M]

- 3 a) Explain the construction and operation of Synchro transmitter and Receiver [8M]
 - b) Find transfer function C(s)/R(s).

Code No: RT31043

[8M]

- 4 a) Explain about the PID controller.
 - b) For a unity feedback system the open loop transfer function is $\mathbf{G(s)} = \frac{10(s+2)}{s^2(s+1)}$. [8M] Find the positional, velocity and acceleration error constants.

Find also steady state error when the input is $\mathbf{R}(\mathbf{s}) = \frac{3}{\mathbf{s}} - \frac{2}{\mathbf{s}^2} + \frac{1}{\mathbf{s}^2}$.

- 5 a) A unity feed back system with forward path transfer function [8M] $G(s) = \frac{K(s+1)}{s^3 + ps^2 + 2s + 1}$ oscillates with frequency 2 rad/ sec. Find values of K and p
 - b) Sketch the root locus of the system whose open loop transfer function is [8M] $G(s) = \frac{k}{s(s+1)(s+3)}$ find the value of k for damping ratio of 0.5
- 6 Consider a unity feedback system having an open loop transfer function [16M] $G(S) = \frac{K}{S(1+0.5S)(1+4S)}$ sketch the Bode plot and determine the value of 'k' so that gain margin is 20 db and phase margin is 30⁰.

7 a) What are the advantages of state model representation? [4M]

b) $[X] = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$, $y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ with initial conditions [12M] $x(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Calculate STM, complete solution x(t) and y(t).

Note: SET-3 needs ordinary graph sheets and semi-log graph sheets.

2 of 2

WWW.MANARESULTS.CO.IN

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 CONTROL SYSTEMS

R13

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B
(Normal and semi & polar graph sheet are the supplied)

PART -A

a)	Explain about the negative feed back of loop with examples.	[3M]
b)	Derive the transfer function of field controlled DC servo motor.	[4M]
c)	What are Standard test signals?	[4M]
d)	Explain about Routh's stability criterion.	[3M]
e)	What is Bode plot? Draw the Bode plot of $G(s)=1/(1+ST)$	[4M]
f)	Explain about Lead-Lag compensator.	[4M]
	a) b) c) d) e) f)	 a) Explain about the negative feed back of loop with examples. b) Derive the transfer function of field controlled DC servo motor. c) What are Standard test signals? d) Explain about Routh's stability criterion. e) What is Bode plot? Draw the Bode plot of G(s)=1/(1+ST) f) Explain about Lead-Lag compensator.

PART -B

2 a) Obtain transfer function $X_1(s)/U(s)$.

b) Obtain the transfer function Eo(s)/Ei(s). (Capacitors C1 and C2 are not charged [8M] initially.)

3 a) Derive the transfer function C(s)/R(s) for the following diagram by using block [8M] diagram reduction technique.

WWW.MANARESULTS.CO.IN

|"|""||"||

Time: 3 hours

Code No: RT31043

[8M]

b) Find transfer function C(s)/R(s).

R13

- 4 a) Explain about PIDl controller.
 - Determine the values of 'K' and 'a' such that the damping factor is 0.6 and a b) [8M] settling time of 1.67 sec. Also find the step response of the system.

5 Sketch the root locus diagram for the following open loop transfer function: [16M]

$$G(S) = \frac{K}{S(S+4)(S^2+4S+20)}$$

6 a) Draw the bode plot of $G(s)H(s) = \frac{250}{s(2.5+s)(10+s)}$. Find Gain Margin & [8M]

Phase Margin.

_

Draw the Nyquist plot of $G(s)H(s) = \frac{k}{s(2+s)(10+s)}$ and there from b) [8M]

determine range of K for stability using Nyquist Criterion.

- 7 a) Obtain the state model of the system whose transfer function is given as [6M] $\frac{y(s)}{u(s)} = \frac{10}{(s^3 + 4s^2 + 2s + 1)}$
 - b) Define controllability and observability. Find controllability and observability of the [10M] given system

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 11 \\ 1 \\ -14 \end{bmatrix} \begin{bmatrix} u \end{bmatrix} : Y = \begin{bmatrix} -3 & 5 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Note: SET-4 needs ordinary graph sheets and semi-log graph sheets.

1"1"11"11"111

[8M]

[8M]

SET - 4