Code No: RT31043

III B. Tech I Semester Supplementary Examinations, October/November- 2020 CONTROL SYSTEMS

(Common to Electronics and Communication Engineering, Electronics and Instrumentation Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A** is compulsory

3. Answer any **THREE** Questions from **Part-B**

(Normal, semi and polar graph sheets are to be supplied)

		$\underline{PART} - \underline{A} $ (22 N	(larks)
1.	a)	Define a system and a control system with one example.	[3M]
	b)	Write the differences between Block diagram and signal flow graph.	[4M]
	c)	Write the equation for the steady state error when the input is unit step signal for type 0 Systems.	[4M]
	d)	How the roots of characteristic equation are related to stability?	[4M]
	e)	Define gain margin and phase margin of a polar plot.	[3M]
	f)	Define state, state variable, and state model.	[4M]
		$\underline{PART} - \underline{B} $ (48 M	(arks)
2.	a)	Explain the different types of control systems with neat diagrams.	[8M]
	b)	What is a mechanical rotational system? Explain the torque balance equations of idealized elements.	[8M]
3.	a)	Derive the expression for transfer function of Armature controlled DC servomotor.	[8M]
	b)	Define Signal flow graph, explain the reduction rules of SFG with one example.	[8M]
4.	a)	Define the 2^{nd} order system; explain the response of undamped second order system for unit step input.	[8M]
	b)	The open loop transfer function of a unity feedback system is given by: G(s)=K/s(sT+1), where K and T are positive constants. By what factor should the amplifier gain K be reduced, so that the peak overshoot of unit step response of the system is reduced from 75% to 25%?	[8M]
5.	a)	Construct the Routh array and determine the stability of the system whose characteristic equation is: $s^6+2s^5+8s^4+12s^3+20s^2+16s+16=0$. Also determine the number of roots lying on right half of s-plane, left half of s-plane and on imaginary axis.	[8M]
	b)	Sketch the root locus of the system whose open loop transfer function is: $G(s)=K/s(s+2)(s+4)$. Find the value of K, so that the damping ratio of the closed loop system is 0.5.	[8M]
6.	a)	What is frequency response of a system; derive the frequency domain specifications of second order system	[8M]
	b)	For the function, $G(s)=5(1+2s)/(1+4s)(1+0.25s)$, draw the bode plot.	[8M]
7.	a)	Explain about Controllability and observability with one example.	[8M]
	b)	Explain the procedure of derivation of state models from block diagrams with one example.	[8M]
