III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 DIGITAL SYSTEM DESIGN \& DIGITAL IC APPLICATIONS

(Comm to ECE and EIE)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-Ais compulsory
3. Answer any THREE Questions from Part-B

PART -A

1 a) Write short note VHDL requirements.
b) Explain about pull gates VHDL modeling.
c) How a 2-to-4 decoder can be realized using ROM?
d) Draw the schematic diagram of a tri-state buffer and explain its operation.
e) Write a VHDL code for a 4 bit up counter
f) Compare latches and flip flops.

PART -B

2 a) What are the different data objects supported by VHDL? Explain scalar types with
[8M]
suitable examples.
b) Write a VHDL Entity and Architecture for the following function.
$\mathrm{F}=\mathrm{a}(\mathrm{XOR}) \mathrm{b}(\mathrm{XOR}) \mathrm{c}$, Also draw the relevant logic diagram.
3 a) When is a label required for a block?
[3M]
b) Explain the Functional Gate-Level verification with example.
c) How does the case statement duffer from the case statement?

4 a) What is the minimum size of a Read Only Memory to realize a binary
multiplier of two 4-bit unsigned numbers?
b) Compare and contrast commercially available Read only memories, PROM, [8M] EPROM and EEPROM.

5 a) Discuss about dynamic electrical behavior.
b) Mention about the merits and demerits of ECL gate

6 a) Discuss about the implementation of comparator using digital IC.
b) Explain about the Dual Priority Encoder with neat diagram.

7 a) Discuss about the working of Johnson Counter using 74 LS194.
[8M]
b) Write a VHDL program to simulate the behavior of a positive edge triggered 'D' flip - flop.
WWW.manaresults.co.in

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 DIGITAL SYSTEM DESIGN \& DIGITAL IC APPLICATIONS

(Comm to ECE and EIE)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-Ais compulsory
3. Answer any THREE Questions from Part-B

PART -A

1 a) Explain about the Objects and Classes.
b) Write shot note on Functional Gate-Level verification.
c) Explain briefly Static RAM Internal structure.
d) Draw the circuit for CMOS OR-AND-Invert logic gates.
e) Design a full adder using two half adders. Write its structural code.
f) Discuss the steps involved in the analysis of sequential circuits.

PART -B
2 a) What statement is primarily used to describe a design in dataflow style?
b) What is the purpose of the 'timescale' compiler derivative? Give an example.
c) What is wrong with the following continuous assignment?
assignreset $=\# 2 \wedge$ hwrite_bus;
3 a) Explain the difference between function and procedure supported by VHDL. Give [9M] the necessary examples.
b) Explain data-low design elements of VHDL.

4 a) Explain the operation of Synchronous SRAM with the help of its internal architecture.
b) Explain the design procedure of 4×4 binary multiplexer using 256×8 ROM

5 a) Write about the totem pole arrangement in case of TTL family.
b) Differentiate between the TTL and DTL logic families.

6 Design 8 bit ALU using digital ICs.
7 Design a 4 bit synchronous binary even counter and write its behavioural model.

www.manaresults.co.in

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 DIGITAL SYSTEM DESIGN \& DIGITAL IC APPLICATIONS

(Comm to ECE and EIE)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-Ais compulsory
3. Answer any THREE Questions from Part-B

PART -A

1 a) Write short note on package declaration.
b) Comparison of VHDL and Verilog HDL.
c) What are the different register types in VHDL?
d) Explain about CMOS steady state electrical behavior.
e) Draw the truth table and circuit diagram of a 2 -to-4 decoder.
f) Write a short note on Programmable Array Logic Devices.

PART -B

2 a) Write a short note on Elements of VHDL.
b) What is the use of packages and libraries in VHDL? Explain with examples.

3 a) Draw the logic diagram of simple8x4 diode ROM and explain its function.
b) Explain the DRAM read and write cycle timings with help of waveforms.

4 a) With the block diagram of output buffer control portion of an SRAM to describe [8M] bi-directional data transfer operations in SRAM.
b) With the help of timing waveforms, explain read and write operations of DRAM.

5 a) Design 2-input LS-TTL NAND gate and explain its operation. Give the function table, truth table.
b) Compare CMOS, TTL and ECL with reference to logic levels, DC noise margin, [8M] propagation delay and fan-out.

6 a) Design the logic circuit and write a data-flow style VHDL program for the [8M] following functions?
$F(X)=\sum A, B, C, D(0,1,3,5,14)+d(8,15)$
b) Write a data-flow style VHDL program for 4:1 MUX.

7 a) Design a self-correcting 4-bit, 4-state ring counter with a single circulating 0 using IC 74LS194.
b) Explain the different Modes of Operation of Shift Registers.

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 DIGITAL SYSTEM DESIGN \& DIGITAL IC APPLICATIONS

(Comm to ECE and EIE)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-Ais compulsory
3. Answer any THREE Questions from Part-B

PART -A

1 a) Write a syntax of VHDL array declaration.
b) Write note onConcurrent and Sequential Statements.
c) Explain different Commercial ROM types.
d) What are the salient features of TTL logic family?
e) Write a VHDL code to simulate a full adder circuit.
f) Write Modes of Operation of Shift Registers.

PART -B
2 a) Explain the terms entity, is, port, in, out and end pertaining to VHDL complier.
b) Write a VHDL program using all the above terms and explain the same.

3 a) Explain the difference between VHDL program structure and other procedural
[8M]
language program structure.
b) Write a VHDL program to detect prime number of a 8-bit input.

4 a) List out various types of Read-Only-Memories that are commercially available. [8M] Describe the functionality and limitations of each type.
b) Draw the timing diagram to specify typical timing parameters of an SRAM to [8M] perform write operation.

5 a) Write about the TTL to CMOS interfacing.
b) Discuss about the fastest logic family and mention the typical values of its various parameters.

6 a) Write the disadvantages in implementation of N-bit binary adder using full adders.
b) Explain the working of carry look ahead adder and its advantages.

7 a) Write a VHDL program to design a modulo-6 counter
b) Write the differences between flip-flop and latch.

www.manaresults.co.in

