

SET - 1

III B. Tech I Semester Regular Examinations, November – 2015 DIGITAL SYSTEM DESIGN & DIGITAL IC APPLICATIONS (Common to ECE and EIE)

 Time: 3 hours
 Max. Marks: 70

 Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-Ais compulsory

 3. Answer any THREE Questions from Part-B

 PART –A
 PART –A

1	a)	What are the data types available in VHDL?	[4M]
	b)	What is logic synthesis?	[3M]
	c)	What are the differences between PROM, PLA and PAL	[3M]
	d)	Explain the terms i) Noise margin ii) Transition time with respect to CMOS logic.	[4M]
	e)	Write a VHDL code for 1×4 demultiplexer?	[4M]
	f)	Convert a D Flip-flop into T flip-flop	[4M]
		<u>PART –B</u>	
2	a)	Explain about data objects in VHDL.	[4M]
	b)	Explain the structure of various LOOP statements in VHDL with examples.	[8M]
	c)	Give the syntax and structure of a package in VHDL.	[4M]
3	a)	Define simulation? Explain about Gate-level simulation, Behavioral simulation and Functional simulation.	[8M]
	b)	Explain about inertial delay and Transport delay models in VHDL with examples.	[8M]
4	a)	Describe DRAM with an appropriate diagram and explain about its timings.	[8M]
	b)	Compare PROM, PAL and PLA.	[8M]
5	a)	Explain the CMOS circuit behavior with resistive load.	[8M]
	b)	Design a 2-input XOR and XNOR logic gates using CMOS logic.	[8M]
6	a)	Implement the 32 input to 5 output priority encoder using four 74LS148 & gates.	[8M]
	b)	Draw the logic diagram of IC 74180 parity generator checker and explain its operation with the help of a truth table.	[8M]
7	a)	Explain how a JK- flip-flop can be constructed using a T- flip-flop.	[8M]
	b)	Discuss the logic circuit of 74×377 register. Write a VHDL program for the same in structural style.	[8M]

WWW.MANARESULTS.CO.IN

|"|"||"||

SET - 2

III B. Tech I Semester Regular Examinations, November - 2015 DIGITAL SYSTEM DESIGN & DIGITAL IC APPLICATIONS (Common to ECE and EIE)

Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in **Part-A**is compulsory 3. Answer any THREE Questions from Part-B ***** PART -A 1 What is HDL? Why do you need it? [3M] a) b) What is binding?Discuss the binding between library and components. [4M] Distinguish between SRAM and ROM. c) [4M] d) What are the advantages and disadvantages of CMOS technology? [3M] Write a VHDL program for 2x4 Decoder e) [4M] Convert a T flip-flop into a JK Flip-flop f) [4M] PART –B 2 Write a VHDL program for n-bit ripple carry adder [8M] a) What are different data types available in VHDL? Explain. b) [8M] 3 a) What are the goals and objectives of Global routing and detailed routing? [8M] Explain the following: i) Timing constraints ii) Performance-driven synthesis [8M] b) iii) Circuit - level simulation. 4 With the help of timing waveforms, explain the read and write operations of static [8M] a) RAM. Design a BCD to Gray-code converter using PLA. [8M] b) Design a 4 input CMOS OR-AND INVERT gate. Explain the circuit with the help 5 a) [8M] of logic diagram and function table. Draw the circuit diagram of basic TTL NAND gate and explain the three parts with b) [8M] the help of functional operation. 6 a) Write a VHDL code for 4-bit Look ahead carry generator. [8M] Design a 4×4 combinational multiplier and write the VHDL program in data flow b) [8M] model. 7 Design an Excess-3 decimal counter using 74 X 163 and explain the operation with [8M] a) the help of timing waveforms Give a VHDL code for a 4-bit upcounter with enable and clear inputs. [8M] b) *****

WWW.MANARESULTS.CO.IN

|"|""||"||

III B. Tech I Semester Regular Examinations, November - 2015 DIGITAL SYSTEM DESIGN & DIGITAL IC APPLICATIONS (Common to ECE and EIE)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A**is compulsory

3. Answer any **THREE** Questions from **Part-B**

PART -A

1	a)	What is Enumeration data type in VHDL? Give examples.	[3M]		
	b)	Differentiate between Functions and Procedures in VHDL.	[4M]		
	c)	List out the applications of ROM.	[3M]		
	d)	Give the logic levels and noise margins of CMOS and TTL families.	[4M]		
	e)	Write a VHDL program for 4x1 multiplexer	[4M]		
	f)	Convert a T flip-flop into a D Flip-flop	[4M]		
<u>PART –B</u>					
2	a)	Discuss the binding? Discuss the binding between entity and components.	[8M]		
	b)	Explain about signal assignment statements and Variable assignment statements with example.	[8M]		
3	a)	What is the importance of time dimension in VHDL and explain its function.	[8M]		
	b)	Discuss some of the important factors related to Synthesis.	[8M]		
4	a)	Draw the block diagram of Synchronous RAM and explain its operation.	[8M]		
	b)	Design an excess-3 to BCD code converter using PLA.	[8M]		
5	a)	Design a 4 input CMOS AND-OR-INVERT gate. Explain the circuit with the help of logic diagram and function table.	[8M]		
	b)	Explain about the steady state electrical CMOS behaviors for i) Resistive loads ii) Non ideal inputs	[8M]		
6	a)	Design a priority encoder for 16 inputs using two 74×148 encoders.	[8M]		
	b)	Write the VHDL program for fixed point to floating point conversion.	[8M]		
7	a)	Design a 3 bit LFSR counter using 74×194 .List out the sequence assuming that the initial state is 111.	[8M]		
	b)	Draw the logic diagram of universal shift register and explain its operation.	[8M]		

WWW.MANARESULTS.CO.IN

|"|"||"||

III B. Tech I Semester Regular Examinations, November - 2015 DIGITAL SYSTEM DESIGN & DIGITAL IC APPLICATIONS (Common to ECE and EIE)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**)

2. Answering the question in Part-Ais compulsory

3. Answer any **THREE** Questions from **Part-B**

PART –A

1	a)	Differentiate between VHDL and Verilog HDL.	[3M]				
	b)	Write a test bench for two input XOR gate using VHDL.	[4M]				
	c)	What are advantages of Programmable logic devices?	[3M]				
	d)	List out the characteristics of ECL.	[4M]				
	e)	Write a VHDL program for 4x2 encoder.	[4M]				
	f)	Convert a JK Flip-flop into D Flip-flop.	[4M]				
	<u>PART –B</u>						
2	a)	Explain about dataflow design elements of VHDL.	[8M]				
	b)	What is binding? Discuss binding between entity and Architecture.	[8M]				
3	a)	Write a VHDL program for comparing 8 bit unsigned integers.	[8M]				
	b)	Discuss synthesis information from entity with examples.	[8M]				
4	a)	Implement the following Boolean functions using a PLA $F1(A,B,C) = \Sigma m(0,1,3,5); F2 = (A,B,C) = \Sigma m(3,5,7).$	[8M]				
	b)	Determine the ROM size needed to realize the logic function performed by 74×153 and 74×139 .	[8M]				
5	a)	What is interfacing? Explain interfacing between low voltage TTL and low voltage CMOS logic.	[8M]				
	b)	Design a transistor circuit of 2 input ECL NOR gate. Explain the operation with the help of function table.	[8M]				
6	a)	Design a full adder using two half adders. Write VHDL program for the above implementation.	[8M]				
	b)	Design a 16-bit comparator using 74×85IC's.	[8M]				
7	a)	Design a 8 bit parallel-in and serial-out shift register. Explain the operation of the above shift register with the help of timing waveforms.	[8M]				
	b)	Design a modulo – 100 counter using two 74 x 163 binary counters.	[8M]				

WWW.MANARESULTS.CO.IN

|"|""||"||