Code No: **RT41101**

R13

Set No. 1

IV B.Tech I Semester Supplementary Examinations, February/March - 2018 DATA ACQUISITION SYSTEMS

(Electronics and Instrumentation Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	Define resolution.	[3]
	b)	What are the advantages of R-2R DAC over weighted resistor?	[4]
	c)	What are the different classes of A/D converters?	[4]
	d)	List out various applications of ADC.	[3]
	e)	What are the basic NDC configurations?	[4]
	f)	What are the noise reduction techniques in DAS?	[4]

<u>**PART-B**</u> (3x16 = 48 Marks)

2.	a)	What is a Data Converter? Tabulate popular data converters and mention their applications?	[8]
	b)	Explain the basic schematic of a DAC.	[8]
3.	a)	Explain the operation and derive an expression for output of any one of Bipolar DAC.	[8]
	b)	A binary-weighted digital to analog converter has an input resistor of 100 k Ω . If the resistor is connected to a 5 V source, calculate the current through the	
		resistor.	[8]
4.	a) b)	Draw and explain voltage to frequency conversion using ADCs. Derive an expression for output voltage of a dual slope ADC	[8] [8]
	0)	Derive an expression for output voltage of a dual slope ADC.	[0]
5.	a)	Explain about switched capacitance NDCS.	[8]
	b)	Explain the working of NADC with SAR and ROM.	[8]
6.	a)	Explain how a DAC can be used as an Analog Multiplier.	[8]
	b)	What is the use of ADC in a voice based PCM System.	[8]
7.	a)	Explain in detail some of the error sources in data converters.	[8]
	b)	Explain the monolithic ADCs and interfacing to the μ P.	[8]