B.Tech III Year I Semester (R13) Regular \& Supplementary Examinations November/December 2016 COMPUTER ORGANIZATION \& ARCHITECTURE
(Common to ECE and EIE)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)
Answer the following: ($10 \times 02=20$ Marks)
(a) How data is fetched from memory?
(b) What is little endian in multibyte organization?
(c) Consider an instruction ADD $\mathbf{2 0}\left(\mathbf{R}_{\mathbf{1}}\right), \mathbf{R}_{\mathbf{2}}$ and assume that R_{1} and $\mathrm{R}_{\mathbf{2}}$ contain 1000 and 1003 respectively. Calculate effective address of operands.
(d) For what reason devices generate interrupts?
(e) Assume that register R_{3} contain a binary number 001000000000 . Write single assembly language instruction to make it binary number that is equivalent to decimal 1024.
(f) Draw the basic organization of a micro programmed control unit
(g) In case, if a program does not show locality of reference then, cost of the execution will increase. Why?
(h) What is the problem with the copy-back protocol?
(i) Define data hazard.
(j) Sometimes processors in tightly coupled multiprocessor environment will be idle. Why?

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

7 (a) Show the block diagram of hardware that implements the following register transfer statements:

$$
\mathrm{T} 2=\mathrm{R} 2 \leftarrow \mathrm{R} 1, \mathrm{R} 1 \leftarrow \mathrm{R} 2
$$

(b) Design a 4-bit combinational circuit decremented using four full-adder circuits.

Contd. in page 2

UNIT - IV

9 (a) A block-set-associative cache consists of a total of 64 blocks divided into 4-block sets. The main memory contains 4096 blocks, each consisting of 128 words.
(i) How many bits are there in a main memory address?
(ii) How many bits are there in each of the TAG, SET, and WORD fields?
(b) A disk unit has 24 recording surfaces. It has a total of 14,000 cylinders. There is an average of 400 sectors per track. Each sector contains 512 bytes of data.
(i) What is the data transfer rate in bytes per second at a rotational speed of 7200 rpm ?
(ii) Using a 32-bit word, suggest a suitable scheme for specifying the disk address, assuming that there are 512 bytes per sector.

UNIT - V

10 (a) A program loop ends with a conditional branch to the beginning of the loop. How would you implement this loop on a pipelined computer that uses delayed branching with one delay slot? Under what conditions would you be able to put a useful instruction in the delay slot?
(b) A computer has one delay slot. The instruction in this slot is always executed, but only on a speculative basis. If a branch does not take place, the results of that instruction are discarded. Suggest a way to implement program loops efficiently on this computer.

OR
11 (a) Construct a diagram for a 4×4 omega switching network. Show the switch setting required to connect input 3 to output 1.
(b) Define the following terms associated with the multiprocessor:
(i) Mutual exclusion.
(ii) Critical section.
(iii) Hardware lock.
(iv) Semaphore.
(v) Test and set instruction.

