B.Tech I Year (R13) Regular & Supplementary Examinations May/June 2015 MATHEMATICS - II

(Common to EEE, ECE, EIE, CSE & IT)

Time: 3 hours

3

Max. Marks: 70

R13

Part – A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Define rank of a matrix.
 - (b) Define a Skew-Hermitian matrix with example.
 - (c) Develop an algorithm using Newton-Raphson method, to find the square root of a positive number N.
 - (d) Write Newton-Gregory forward and backward interpolation formula.
 - (e) Write Milne's predictor-Corrector formulae to solve the ODE $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.
 - (f) Write Dirichlet conditions for the expansion of f(x) in Fourier series.
 - (g) Define finite Fourier sine and cosine transforms and their inversion formulae in 0 < x < L.
 - (h) State initial and final value theorems for Z-transform.
 - (i) Derive the partial differential equation by eliminating the constants a and b from the equation $z = a x^2 + by^2$.
 - (j) Form partial differential equation by eliminating the arbitrary functions from $z = f(x) + e^x g(x)$.

(Answer all five units, 5 X 10 = 50 Marks)

2 (a) Determine the values of λ for which the following system of equations has non-trivial solutions. Find them:

 $(\lambda - 1)x + (3\lambda + 1)y + 2\lambda z = 0$ $(\lambda - 1)x + (4\lambda - 2)y + (\lambda + 3)z = 0$ $2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0.$

(b) Prove that the Eigen values of Hermitian matrix are real.

Find the Eigen vectors of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$ and hence reduce the quadratic form

 $x_1^2 + 3x_2^2 + 3x_3^2 - 2x_2 x_3$ to a 'sum of squares'. Also write its nature.

- 4 (a) Determine the root of $x e^x 2 = 0$ by method of false position.
 - (b) Using Lagrange's formula, express the function $\frac{x^2+6x-1}{(x^2-1)(x-4)(x-6)}$ as a sum of partial fractions.
- OR 5 (a) Fit a least squares quadratic curve $y = a_0 + a_1x + a_2x^2$ to the following data $x \quad 1 \quad 2 \quad 3 \quad 4$ $y \quad 1 \quad 7 \quad 1 \quad 8 \quad 2 \quad 3 \quad 3 \quad 2$ Estimate y(2.4). WWW Manaresults Co.in

(b) Evaluate $\int_{0}^{0.6} e^{-x^2} dx$ by using Simpson's $\frac{1}{3}$ rule taking seven ordinates.

Continued in page 2

R13

UNIT - III

- 6 (a) Obtain Picard's second approximate solution of the initial value problem $\frac{dy}{dx} = \frac{x^2}{y^2+1}$, y(0) = 0. Find y(1).
 - (b) Given that $\frac{dy}{dx} = 2 + \sqrt{xy}$, y(1) = 1. Find y(2) in steps of 0.2 using the Euler's method. OR
- 7 Find the two half –range expansions of the function:

$$f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < L \end{cases}$$
UNIT - IV

- 8 (a) Express the function $f(x) = \begin{cases} 1 & for |x| \le 1 \\ 0 & for |x| \ge 1 \end{cases}$ as a Fourier integral. Hence evaluate $\int_0^\infty \frac{\sin\lambda\cos\lambda x}{\lambda} d\lambda$.
 - (b) Find: (i) $Z\{\cos\theta + i \sin\theta\}^n$. (ii) $Z^{-1}\left\{\frac{z^2}{(z-a)(z-b)}\right\}$ by using convolution theorem. OR
- 9 (a) Find the Fourier transform of $e^{-a^2 x^2}$, a > 0. Hence deduce that $e^{-\frac{x^2}{2}}$ is self reciprocal in respect of Fourier transform.
 - (b) Using the Z-transform solve the difference equation: $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0, u_1 = 1$.

10 Solve the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ under the conditions

$$y(0,t) = 0, y(L,t) = 0 \text{ for all } t; \ y(x,0) = f(x) \text{ and } \left(\frac{\partial y}{\partial t}\right)_{t=0} = g(x), 0 < x < L.$$

11 A bar AB of length 10 cm has its ends A and B kept at 30° and 100° temperatures respectively, until steady-state condition is reached. Then the temperature at A is lowered to 20° and that at B to 40° and these temperatures are maintained. Find the subsequent temperature distribution in the bar.

www.ManaResults.co.in