

## B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 MATHEMATICS – II

(Computer Science and Engineering)

Max. Marks: 70

Time: 3 hours

1

## PART – A

### (Compulsory Question)

\*\*\*\*\*

- Answer the following: (10 X 02 = 20 Marks)
  - (a) Determine the rank of the matrix:  $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \end{bmatrix}$
  - (b) Find the values of k for which the system of equations: (3k-8)x + 3y + 3z = 0 3x + (3k-8)y + 3z = 0
    - 3x + (3x 8)y + 3z = 03x + 3y + (3k - 8)z = 0 has a nontrivial solution.
  - (c) Given the values.

| X:   | 5   | 7   | 11   | 13   | 17   |
|------|-----|-----|------|------|------|
| f(x) | 150 | 392 | 1492 | 2366 | 5202 |

Evaluate f(9), using Lagrange's interpolation formula.

- (d) Use Simpson's  $1/3^{rd}$  rule to find  $\int_0^{0.6} e^{-x^2} dx$  by taking seven ordinates.
- (e) Apply Runge-Kutta fourth order method, to find an approximate value of y when x = 0.2, given that dy/dx = x+y and y = 1 when x = 0.
- (f) Find the Fourier series to represent  $x^2$  in the interval (-I, I)
- (g) Find the Fourier cosine transform of  $e^{-x^2}$ .
- (h) Find the z-transform of the following:

(i)  $3n = 4 \sin n\pi/4 + 5a$ . (ii)  $(n + 1)^2$ .

- (i) Derive a partial differential equation (by eliminating the constants) from the equation  $2z = \frac{x^2}{x^2} + \frac{y^2}{x^2}$ .
- (j) Using the method of separation of variables solve  $py^3 + qx^2 = 0$ .

#### PART – B

(Answer all five units,  $5 \times 10 = 50$  Marks)

- 2 (a) Find the matrix p which transforms the matrix  $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$  to the diagonal form. Hence calculate A<sup>4</sup>.
  - (b) Reduce the quadratic form 2xy + 2yz + 2zx into canonical form.

OF

- 3 (a) Prove that the matrix  $A = \begin{pmatrix} \frac{1}{2}(1+i) & \frac{1}{2}(-1+i) \\ \frac{1}{2}(1+i) & \frac{1}{2}(1-i) \end{pmatrix}$  is unitary and find A<sup>-1</sup>.
  - (b) Prove that every Hermitian matrix can be written as A + iB, where A is real and symmetric and B is real and skew-symmetric.

Contd. in page 2

# www.ManaResults.co.in



## UNIT - II

- (a) Find a real root of the equation  $x^3 2x 5 = 0$  by the method of false position corrected to three 4 decimal places.
  - (b) Find the positive root of  $x^4 x = 10$  corrected to three decimal places, using Newton-Raphson method.

(a) From the following table, estimate the number of students who obtained marks between 40 and 45: 5

| Marks:           | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |  |
|------------------|-------|-------|-------|-------|-------|--|
| No. of students: | 31    | 42    | 51    | 35    | 31    |  |

- (b) Evaluate  $\int_0^6 \frac{dx}{1+x^2}$  by using:
  - (i) Trapezoidal rule.
  - (ii) Simpson's 1/3 rule.
  - (iii) Simpson's 3/8 rule.

## UNIT - III )

- 6
- (a) Solve by Taylor's series method the equation  $\frac{dy}{dx} = \log (xy)$  for y(1.1) and y(1.2), given y(1) = 2. (b) Apply Milne's method, to find a solution of the differential equation y' =x y<sup>2</sup> in the range  $0 \le x \le 1$  for the boundary conditions y = 0 of x = 0.

OR

(a) Find the Fourier series to represent x -  $x^2$  from x = - $\pi$  to x =  $\pi$ . 7

(b) Express f(x) = x as a half range sine series in 0 < x < 2.

Find the Fourier transform of:  $f(x) = \begin{cases} 1 - x^2, |x| \le 1\\ 0, & |x| > 1 \end{cases}$ 8 (a)

Hence evaluate 
$$\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx$$

(b) Show that  $Z(\sin hn\theta) = \frac{1}{z^2 - 2z \cos h\theta + 1}$ 

OR

- (a) If  $Z^{-1}[U(z)] = u_n$  and  $Z^{-1}[V(z)] = v_n$ , then prove that  $Z^{-1}[U(z), V(z)] = \sum_{m=0}^n u_m$ .  $v_{n-m} = u_n * v_n$  where the symbol \* denotes the convolution operation. 9
  - (b) Find the inverse z.-transform of  $\frac{z^3-20z}{(z-2)^3(z-4)}$ .

UNIT - V

- Solve the differential equation  $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$  for the conduction of neat along a rod without radiation, 10 subject to the following conditions:
  - U is not infinite for  $t \rightarrow \infty$ . (a)

(b) 
$$\frac{\partial u}{\partial x} = 0$$
 for  $x = 0$  and  $x = l$ .

 $u = lx - x^2$  for t = 0, between x = 0 and x = l. (c)

OR

Solve the Laplace equation  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$  subject to the conditions u(0,y) = u(l,y) = u(x,0) = 011 and  $u(x, a) = \sin n\pi x/l$ .

\*\*\*\*\*

www.ManaResults.co.in