Max. Marks: 70

B.Tech I Year I Semester (R15) Supplementary Examinations June 2016 MATHEMATICS – I

(Common to CE, EEE, CSE, ECE, ME, EIE and IT)

Time: 3 hours

PART – A

(Compulsory Question)

- Answer the following: (10 X 02 = 20 Marks) 1
 - Find an integrating factor so that $\frac{dy}{dx} = \frac{y}{x} + \frac{x^2 + y^2}{x^2}$ be an exact differential equation. (a)
 - Solve $(D^3 1)v = 0$. (b)
 - If the complementary function of $(D^2 + 1)y = x \sin x$ is $y = A \cos x + B \sin x$ then find A. (c)
 - Roots of the auxiliary equation for $\left(LD^2 + RD + \frac{1}{c}\right)q = E \sin pt$. (d)
 - If $u = e^{x+y}$, $v = e^{-x+y}$ then find Jacobian. (e)
 - Find the radius of curvature at any point of the cardioids is $s = 4a \sin \frac{\Psi}{2}$. (f)
 - Evaluate $\int_0^1 \int_0^1 \frac{dx \, dy}{\sqrt{1-x^2} \sqrt{1-y^2}}$. (g)
 - (h) Find the quadrature of the curve $y = \sin x$ from x = 0 to $x = \pi$.
 - Find $\nabla^2 r^n$. (i)
 - Evaluate $\int_{C} x dy y dx$ around the circle $C: x^{2} + y^{2} = 1$. (j)

2 Find the orthogonal trajectories of the family of cardioids $r = a(1 - \cos \theta)$ where 'a' is a parameter.

OR

Solve $(D^2 - 4D)y = e^x + \sin 3x \cos 2x$. 3

UNIT – II 🕽

- Solve the equation using method of variation of parameters: $(D^2 + 3D + 2)y = e^x + x^2$. 4 OR
- A horizontal beam is uniformly loaded. It's one end is fixed the other end is subjected to a tensile 5 force P. The deflection of the beam is given by EI $\frac{d^2y}{dx^2} = py - \frac{1}{2}wx^2$. Given that $\frac{dy}{dx} = 0$ at x = 0, show that the deflection of the beam for a given x is $y = \frac{w}{px^2}(1 - \cosh nx) + \frac{wx^2}{2p}$, where $x^2 = \frac{p}{EL}$.

UNIT – III

6 Find the point on the lx + my + nz = P which is nearest to the origin.

Find the radius of curvature at (-2, 0) on the curve $y^2 = x^3 + 8$. 7

UNIT – IV

Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 dx dy$ by changing the order of integration. 8

9 Find the volume of the ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Evaluate $\int_{c} \left[(2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy \right]$ where C is the arc of the parabola 10 $2x = \pi y^2$ from (0, 0) to $(\frac{\pi}{2}, 1)$.

www.ManaResults.co.in Verify Gauss's divergence theorem for $\overline{F} = (x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$ taken over the 11 rectangular parallelepiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$.