B.Sc. (MATHEMATICS) INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on
 the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING,
 THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE
 HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE
 SHEET, DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (100 questions in Mathematics, 50 questions in Analytical Ability and 50 questions in Communicative English)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- 3. Use of Calculators. Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- 7. One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate:
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he/she enters his/her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as majoractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

MATHEMATICS

- If ϕ satisfies $2\frac{dy}{dx} + 4y = x^2$ and ψ satisfies $\frac{dy}{dx} + 2y = x^3$ then $\phi + \psi$ satisfies
 - (1) $3\frac{dy}{dx} + 6y = x^2 + x^3$

(2) $\frac{dy}{dx} + 2y = x^2 - x^3$

(3) $2\frac{dy}{dx} + 4y = x^2 + 2x^3$

- $(4) \quad \frac{dy}{dx} + 2y = x^5$
- If ϕ is a solution of y'+iy=x with $\phi(0)=2$. Then $\phi(\pi)=$ 2.
 - (1) m
- (2) $-\pi$
- (3) $i\pi$
- (4) $-i\pi$

- A solution of $y' = \frac{e^{x-y}}{1+e^x}$ is given by y =
 - (1) $\log (1+e^x)$

(2) $\log \left(\log \left(1 + e^x \right) \right)$

(3) 1+e^x

- (4) el+e1
- The general solution of (2x+2y-1)dy = (x+y+1)dx is given by
 - (1) $\log |x+y| + x 2y = c$

(2) $\log|x+y|-x+2y=c$

(3) $\log |x+y| + 2x - y = c$

- (4) $\log |x+y| 2x + y = c$ (c is a constant)
- The general solution of $y dx + \left(x + \frac{2y}{e^{xy}}\right) dy = 0$ is (1) $e^{xy} - y^2 = c$ (2) $e^{xy} + y^2 = c$ (3) $e^{xy} - x^2 = c$ (4) $e^{xy} + x^2 = c$

6. The general solution of
$$y + 2\left(\frac{dy}{dx}\right)^2 = (x+1)\frac{dy}{dx}$$
 is

(1)
$$v+2c^2 = (x+1)c$$

(2)
$$y+2y^2 = (x+1)y+c$$

(3)
$$y+2y^4 = (x+1)y^2+c$$

(4)
$$y + 2\sqrt{y} = (x+1)\sqrt{y} + c \ (y \ge 0) \ (c \text{ is a constant})$$

7. The general solution of
$$\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$$
 is given by

(1)
$$(xy-c_1)(x^2-y^2-c_2)=0$$

(2)
$$(xy-c_1)(x^2+y^2-c_2)=0$$

(3)
$$(x^2y^2-c_1)(x-y-c_2)=0$$

(4)
$$(x^2y^2-c_1)(x+y+c_2)=0$$

8. The singular solution of
$$p = \log(px - y)$$
, where $p = \frac{dy}{dx}$ is $y =$

(1)
$$(x+1) \log x$$

(2)
$$(x-1) \log x$$

(3)
$$x (\log x + 1)$$

(1)
$$(x+1) \log x$$
 (2) $(x-1) \log x$ (3) $x (\log x+1)$ (4) $x (\log x-1)$

9. The solution of
$$(x^2-y^2) dx = 2xy dy$$
 is

(1)
$$x(x^2+3y^2) = c$$

(2)
$$x(x^2-3y^2) = c$$

(3)
$$x^2(x+3y) = c$$

(4)
$$x^2(x+3y) = c$$
 (c is a constant)

10. The integrating factor of
$$(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$$
 is

$$(2) (x+1)^2$$

(3)
$$\frac{1}{x+1}$$

(2)
$$(x+1)^2$$
 (3) $\frac{1}{x+1}$ (4) $\frac{1}{(x+1)^2}$

11. A solution of
$$(D^3+D^2+5D+5)y=0$$
 where $D=\frac{d}{dx}$ is

(1)
$$v = \sin x$$

(2)
$$y = \cos x$$

$$(3) \quad y = e^{x}$$

(4)
$$y = e^{-x}$$

12. Particular integral of
$$(D^2+5D+6)$$
 $y=2$ sinh x is

(1)
$$y = \frac{1}{12}(e^{-x} + 6e^{x})$$

(2)
$$y = \frac{1}{12}(e^x + 6e^{-x})$$

(3)
$$y = \frac{1}{12}(e^{-x} - 6e^{-x})$$
 (4) $y = \frac{1}{12}(e^x - 6e^{-x})$

(4)
$$y = \frac{1}{12}(e^x - 6e^{-x})$$

- 13. The solution of $(D^2-2D-3)y=0$ is y=

- (1) $c_1e^x + c_2e^{3x}$ (2) $c_2e^x + c_3e^{-3x}$ (3) $c_2e^x + c_3e^{-3x}$ (4) $c_3e^{-x} + c_3e^{3x}$
- 14. The solution of $(D^2+4)y=0$ is given by y=
 - (1) $c_1e^{2x}+c_2e^{-2x}$

(2) $c_1e^{2x}-c_2e^{-2x}$

(3) $c_1\cos 2x + c_2\sin 2x$

- (4) $c_1\cos 4x + c_2\sin 4x$
- Particular integral of (D-3)² y^me^{3s} is
 - (1) $\frac{x^2}{2}e^{3x}$ (2) $\frac{x^2}{2}e^{3x}$ (3) $\frac{x^2}{2}e^{3x}$ (4) $\frac{x}{2}e^{3x}$

- 16. The complementary function of $(D^2-2D+2)y = \sin x$ is
 - (1) $e^{\epsilon}(c, \cos x + c, \sin x)$

- (2) $e^{-a}(c, \cos x + c, \sin x)$
- (3) $e^{-s}(c, \sinh x + c, \cosh x)$
- (4) $e^x(c_x \cosh x + c_x \sinh x)$
- 17. Particular integral of (D²+1) $y = e^{2x} \cos 3x$ is $\frac{e^{2x}}{40} \phi(x)$ where $\phi(x) =$
 - (1) $3 \sin 3x + \cos 3x$

(2) $3 \sin 3x - \cos 3x$

(3) $\cos 3x - 3 \sin 3x$

- (4) $-3 \sin 3x \cos 3x$
- 18. The particular integral of $(D^2-1)y = x \sin x$ is
 - $(1) \quad \frac{1}{2}(x\sin x + \cos x)$
- (2) $\frac{1}{2}(\sin x + x \cos x)$
- (3) $-\frac{1}{2}(x \sin x + \cos x)$

- (4) $-\frac{1}{2}(\sin x + x \cos x)$
- 19. The differential equation $\left(\frac{dy}{dx}\right)^2 + xy^2 = 0$ is
 - (1) linear

(2) homogeneous

(3) of second order

(4) of second degree

(6531)

20.	The general solu	tion of $\frac{d^2y}{dx^2} - 2\alpha \frac{dy}{dx} +$	$\alpha^2 y = 0$ is such that o	ne term contains e^{aa} then is	s second
	term contains a	constant times			
	(1) 8.49	(2) xe-∞	(3) xe ^{-αx}	(4) $\frac{x^2}{2}e^{\alpha x}$	

- 21. The GC.D of 396 and 128 is
 (1) 2 (2) 4 (3) 6 (4) 8
- 22. If (a, b) = 1 then (a + b, a b) is

 (1) 2 (2) 3 (3) 4 (4) 5
- 23. If $F_n = 2^{2^n} + 1$ is the n^{th} Fermat number then

 (1) F_3 is composite

 (2) F_4 is composite

 (3) F_5 is composite

 (4) F_2 is composite
- 24. The congruence 5x = 3 (mod 24) has
 (1) no solution
 (2) two solutions
 (3) infinite number of solutions
 (4) unique solution
- 25. If n is an integer ≥ 2 and (n-1)!=-1 (mod n) then n is
 (1) 2 (2) composite (3) a prime
 26. is a binary operation on
 - (1) set of positive integers
 (2) set of integers
 (3) set of rational numbers
 (4) set of non-zero rationals
- 27. The number of binary operations on a set of n elements is

 (1) n^n (2) n^{n^2} (3) $(n^2)^n$ (4) $(n^n)^n$

Set Code :	T2
Booklet Code :	A

28.		ne group (1,0) w	here I	is the set of	integers a	$\operatorname{nd} a_0 b = a + b +$	1 for a	all a,b in I. The identi	ity
	(1)	0	(2)	1	(3)	-1	(4)	-2	
29.	Ifev	ery element of	the gro	up G is its o	own inverse	e then G is			
		non abelian	(2)	abelian		cyclic	(4)	the trivial group {0}	
30.	If A	and B are subgr	roups o	f a group G	then A∪E			70	
	(1)	is an abelian s	ubgrou	pofG	(2)	is a non-abelia	n subg	roup of G	
	(3)	need not be a	subgro	up of G	(4)	is equal to G			
31.	lfα	= (2 5 3) (4 7)	(109	8) is a perm	utation of	the set {1,2,3,4,	5,6,7,	8,9} then its order is	
	(1)	3 .	(2)	6	(3)	9	(4)	12	
32.	In th	ne group (S3, •)), the nu	umber of ele	ements who	ose inverse is its	elf is		
	(1)		(2)		(3)		(4)	4	
33.	The	number of gen	erators	in (Z ₁₀ , + ₁₀)	is			10217	
	(1)	1	(2)	2	(3)	4	(4)	5	
34.	Eve	ry cyclic group				ic to			
	(1)	multiplicative			rationals				
	(2)	additive grou							
	(3)	additive grou			74 TURES				
	0.00	$S = \{1, -1\} $ w							
35.	φ is resp	a homomorph pectively then	ism of	the group (7 into the g	group G' whose	identi	ty elements are e and	e'
	(1)	$\phi(e) = e'$ and	$\phi(x^{-1})$	$\neq \{\phi(x)\}^{-1}$	for all x in	G			
	(2)	$\phi(e) \neq e'$ and	$\phi(x^{-1})$	$= \{\phi(x)\}^{-1}$	for all x in	G			
	(3)	$\phi(e) = e'$ and	$\phi(x^{-1})$	$\neq \{\phi(x)\}^{-1}$	for some x	in G			
	(4)	$\phi(e) = e'$ and	$\phi(x^{-1})$	$= \{\phi(x)\}^{-1}$	for all x in	G			
					7.4			(BS	SM)

Set Code :	T2
Booklet Code :[A

36.	A h	omomorphisn	n of a gr	oup G into the	group G'is an isomorphism if					
	(1)	G' is a prope	er subgrou	$\operatorname{ip} G$	(2)	G is a prope	r subgro	up of G'		
	(3)	$ker\varphi \ is \ the$	identity e	lement of G	(4)	$\ker \phi$ is the i	identity o	element of G'		
37.	If al	I and bH are t	wo left co	osets of a group	G and	aH≠bH the	n aH∩	bH =		
	(1)	{a, b}	(2)	Н	(3)	G	(4)	ф		
38.	is th	e order of H t	hen H is				other sub	ogroup of G whose order		
	(1)	abelian	(2)	cyclic	(3)	normal	(4)	G		
39.	If N,	M are the no	rmal subg	groups of a group	up G th	en $\frac{NM}{M}$ is i	isomorpl	nic to		
	(1).	MN/N	(2)	N	(3)	NOM	(4)	$M/N \cap M$		
40.	Ana	utomorphism	of a grou	p G is an isom	orphis	nofG				
	(1)	onto a prope	r subgrou	pofG	(2)	onto a super	subgrou	pofG		
	(3)	onto a trivial	subgroup	oofG	(4)	onto G				
41.	If ä	is a constant	vector an	$d \vec{r} = x\vec{i} + y\vec{j} + z$	\vec{k} then	$\nabla(\vec{a}.\vec{r}) =$				
	(1)	$\vec{0}$	(2)	\vec{a}	(3)	\vec{r}	(4)	$\vec{i} + \vec{J} + \vec{k}$		
42.	lf ř	is the position	i vector o	f an arbitrary p	oint th	en $\nabla . \vec{r} =$		187		
	(1)	0	(2)	1	(3)	2	(4)	3		
43.	If r=	$= \left(x^2 + y^2 + z^2\right)$	$)^{\frac{1}{2}}$ then	$\nabla^2 \left(\frac{1}{r} \right) =$						
	(1)	0	(2)	1	(3)	2	(4)	3		

JAS.	The	valua of u for	which th	e vector e"ë	where r	$= \vec{r} $ is solenoida	alis	
44.	(1)				(3)		(4)	-3
45.		derivative of	$\phi(x, y, z)$ (2)		z^2 at (2, (3)		ection (4)	of $\vec{j} - 2\vec{j} + 2\vec{k}$ is
46.	The	value of \(\((x)	$2\vec{i} + y^2\vec{j}$	$+z^2\vec{k}$)dS over	er the face	es of the cube gi	ven by	$0 \le x, y, z \le 1$ is
	(1)		(2)		(3)		(4)	
47.		$= (3x^2 + 6y)^{2}$	–14 <i>yz</i> j +	$20xz^2\vec{k}$ then	$\int_{C} \vec{V} \cdot dV $	where C is the str	raight	line joining (0, 0, 0) and
			(2)	11 .	(3)	4	(4)	$\frac{13}{3}$
48.		$c\vec{i} + by\vec{j} + cz\vec{k}$	$).\vec{n}dS = \frac{7}{3}$	$\pi(a+b+c)$	then λ =		the	unit sphere and
	(1)	2	(2)	4	(3)	1	(4)	3
49.		circulation o	$f\vec{F}(x,y,$	$z) = y\vec{i} + z\vec{j} +$	$x\vec{k}$ arow	nd the circle x =	cosθ,	$y = \sin\theta$ and $z = 0$ is $\lambda \pi$
	(1)		(2)	1	(3)	-1	(4)	3
50.	The	value of ∮(2	ydx + xdy) where C is	$x^2 + y^2 = 4$	4 is $\lambda \pi$ then $\lambda =$		
	(1)	-2	(2)	2	(3)	-4	(4)	4
								(BSM)

A plane meets the coordinate axes at A, B, C respectively and the centroid of Δ ABC is (a, b, c).

If the equation to the plane is given by $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = \lambda$ then $\lambda =$

- (1) 0
- (2)

(3) 2

- (4) 3
- 52. The sum of the intercepts made by the plane 2x 3y 6z = 1 on the coordinate axes is
 - (1) 0
- (2) 7
- (3) -7
- (4) 1
- A variable plane passes through a fixed point (a, b, c) and meets the coordinate axes at A, B, C respectively. If the locus of the point common to the planes through A, B, C and parallel to the

coordinate planes is $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \lambda$ then $\lambda =$

(1) 0

- (2) 1
- (3) 2
- (4) 3
- 54. The planes 4x + 3y 3z = 5,5x + 5y 2z = 10,2x y 5z = -5 intersect
 - (1) at no point

(2) exactly at one point which is not the origin

(3) along a line

- (4) intersect at origin only
- 55. The distance between the planes $ax + by + cz + d_1 = 0$ and $ax + by + cz + d_2 = 0$ is
 - $(1) \quad \frac{d_1 d_2}{\sqrt{a^2 + b^2 + c^2}}$

(2) $\frac{d_2 - d_1}{\sqrt{a^2 + b^2 + c^2}}$

(3) $\frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}$

- (4) $|d_1 d_2|$
- 56. A plane passes through (a, b, c) and intersects the coordinate axes at A, B, C respectively. The centre of the sphere OABC, O being the origin lies on $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \lambda$ where $\lambda =$
 - (1) 0

- (2) 1
- (3) 2
- (4) 3

10-A

57. If
$$x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$$
 ($d > 0$) touches the coordinate axes then $(u, v, w) =$

(1)
$$\left(\sqrt{d}, \sqrt{d}, \sqrt{d}\right)$$
 (2) $\left(\sqrt{\frac{d}{2}}, \sqrt{\frac{d}{2}}, \sqrt{\frac{d}{2}}\right)$ (3) $\left(\sqrt{2d}, \sqrt{2d}, \sqrt{2d}\right)$ (4) $(0, 0, 0)$

- 58. If $lx + my + nz = p(\neq 0)$ and $l'x + m'y + n'z = p'(\neq 0)$ are conjugate planes with respective to $x^2 + y^2 = a^2 > 0$ then $ll' + mm' + nn' = \lambda$ where $\lambda =$

- (1) $\frac{a^2}{pp'}$ (2) $\frac{pp'}{a^2}$ (3) $\left|\frac{a}{pp'}\right|$ (4) $\left|\frac{pp'}{a}\right|$
- 59. If r_1 , r_2 are the radii of two orthogonal spheres, then the radius of the circle of their intersection is

(1)
$$\frac{r_1 + r_2}{\sqrt{r_1^2 + r_2^2}}$$

(2)
$$\frac{r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$$

(3)
$$\frac{\sqrt{r_1^2 + r_2^2}}{r_1 r_2}$$

(1)
$$\frac{r_1 + r_2}{\sqrt{r_1^2 + r_2^2}}$$
 (2) $\frac{r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$ (3) $\frac{\sqrt{r_1^2 + r_2^2}}{r_1 r_2}$ (4) $\frac{\sqrt{r_1^2 + r_2^2}}{r_1 + r_2}$

- The centers of the spheres of a coaxial system lie on 60.
 - (1) square
- (2) circle
- (3) sphere
- (4) straight line
- 61. The set of reals that satisfy $|2x+3| \le 11$ is is that satisfy $|2x + 3| \le 11$ is

 (2) [-7, 4] (3) [-7, 4) (4) (-7, 4)
 - (1) (-7,4]

- 62. $\inf \left\{ n \frac{1}{n^2} + 3 : n \in \mathbb{Z}^+ \right\}$ is
 - (1) 4
- (2) 3
- (3) 5
- 63. The sequence $\{a_n\}$ defined by $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \cdots + \frac{1}{n+n}$ for $n = 2, 3, \dots$ is
 - (1) divergent

convergent

(3) oscillates finitely

(4) oscillates infinitely

- 64. If p, q are positive rationals and $\sum_{n=2}^{\infty} \frac{n^q}{(n+1)^p}$ converges then p-q is
 - (1) 0

- (3) in(0.1] (4) > 1

- 65. $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n}$ is convergent when x is in
 - (1) [-11] (2) (-11]

- (3) [-1 1) (4) (-2 2)
- 66. If $f: R \to R$ is defined by $f(x) = \begin{cases} \frac{|x-1|}{x-1}, & x \in R \{1\} \\ 0 & when \ x = 1 \end{cases}$ then $\underset{x \to 1}{Lt} f(x)$ $(1) = 0 \qquad (2) = 1 \qquad (3) \quad \infty \qquad (4) \text{ does not exist}$

- 67. If f and g are such that $\underset{x\to a}{Li} \{f(x) + g(x)\}\$ exists then
 - (1) $\underset{x \to a}{Lt} f(x)$ and $\underset{x \to a}{Lt} g(x)$ exist (2) $\underset{x \to a}{Lt} f(x)$ only exists

- (3) $\underset{x \to a}{Lt} g(x)$ only exists (4) $\underset{x \to a}{Lt} f(x)$ and $\underset{x \to a}{Lt} g(x)$ need not exist
- 68. If f:R \rightarrow R is such that $f(x) = \begin{cases} x & \text{if } x \text{ is irrational} \\ -x & \text{if } x \text{ is rational} \end{cases}$ then f is continuous
 - (1) on R

(2) at rationals

(3) at irrationals

- (4) at (0, 0) only
- 69. The interval in which the equation $f(x) = x^3 + x^2 + 3x 4 = 0$ has a real root is

 - (1) $\begin{bmatrix} 0 & \frac{1}{4} \end{bmatrix}$ (2) $\begin{bmatrix} 0 & \frac{1}{3} \end{bmatrix}$ (3) $\begin{bmatrix} 0 & \frac{1}{2} \end{bmatrix}$ (4) $\begin{bmatrix} 0 & 1 \end{bmatrix}$

- 70. The function f(x) = [x] for all $x \in R$ is continuous
 - (1) on R

no where on R (2)

(3) at integral value of x

(4) at non-integral value of x

(BSM) 12-A

Set Code :	
Booklet Code :	A

71.	lffi	is defined	on R b	y f(x)	= x-1 + x +	x+1 for	all x in R then f	is dif	ferentiable	
		on R					on $R-\{-1,0,1\}$			R
72.	lffi	s defined	on R a	nd is s	such that $ f(x) $	-f(y)	$\leq x-y ^{\frac{1}{2}}$ for all	[x, y]	in R then the fi	unction is
		strictly					strictly decreas			
	(3)	constant	t			(4)	non-constant			
73.	If f	is an ever	n functi	on on	R and is differ	rentiable	at '0'. Then f'(0)=		
	(1)	0		(2)	$\frac{1}{2}$	(3)	$-\frac{1}{2}$	(4)	1	
74.		the functi ⊨0 is	on f(x)	=log(x²+ab)-logx(a	+b) for a	all $x \in [a \ b]$ when	re <i>b</i> >	a > 0, the poin	nt c where
				(2)	ab	(3)	\sqrt{ab}	(4)	b-a	
75.	20000	and the substitute of the subs) and $f(0) = 2$, $g(0) = 2$	(0) =	1, f(1) = 6, g(1)) = 2 such
	that	there is a	<i>c</i> ∈ (0	1) wit	$h \frac{g'(c)}{f'(c)} = \lambda th$	en λ =				
	(1)	0		(2)	1	(3)	2	(4)	$\frac{1}{4}$	
76.	If fi	s integrab	le on [a	a b] th	en f on [a b] is	s				
	111111111111111111111111111111111111111				continuous		discontinuous	(4)	bounded	
77.	If <i>f</i> :	$[02] \rightarrow I$? is def	ined b	y f(x) = 1 for x	c≠1 and	$f(1) = 5 \text{ then } \int_{0}^{2} f(1) = 5 th$	(x)d	x =	
	(1)	1		(2)	2	(3)	5	(4)	10	
78.	If f	$(x) = \frac{1}{2^{"}} v$	when 2	1 n+1 < x	$x \le \frac{1}{2^n} (x=0, 1)$, 2) and f(0) = 0 the	en ∫ 0	f(x) dx =	
	(1)	0		(2)	$\frac{1}{3}$	(3)	$\frac{2}{3}$	(4)	1	
						13-A	- .		1	(BSM)
		W	WW	. m	anar	esi	ılts.	CC	.ın	

- 79. The value of [x]dx is
 - (1) 2
- (2) 4
- (3) 6
- (4) 8

- 80. $\int_{0}^{1} \left\{ 1 + \sum_{n=1}^{\infty} \frac{(-2x)^{n}}{n!} \right\} e^{2x} dx =$
 - (1) 0
- (2) 1
- (3) 2
- 81. R is a ring with unity 1 and zero element 0. If x is a non-zero element in R such that there is a unique y in R with xyx = x then
 - (1) xy = 1 = yx
- (2) $xy = 1 \neq yx$
- (3) $xy \neq 1 = yx$
- (4) xy ≠1≠ yx
- The characteristic of the residue classes modulus 8 is
 - (1) 1
- (2) 2
- (3) 4
- (4) 8

- The number of zero divisors in a field is
 - (1) 0
- (2) 1

- (3) oo
- (4) 2

- 84. In the ring $(Z_6, +_6, \bullet_6)$, an idempotent element is
 - $(1) \ \bar{2}$
- (2) ō
- (3) $\bar{3}$
- (4) 5
- 85. If R_{μ} , R_{ν} are subrings of a ring R then $R_{\nu} \cup R_{\nu}$ is subring of R if
 - (1) $R_1 \cap R_2 = \{0, 1\}$

(3) R,⊆R,

- (4) either $R, \subseteq R$, or $R, \subseteq R$,
- An example of a non-commutative ring is
 - (1) The set of integers with usual addition and multiplication
 - (2) (Z, +, •,)
 - (3) The set of rationals with usual addition and multiplication
 - (4) The set of 2x2 matrices with usual addition and multiplication

Set Code:	T2
Booklet Code:	A

	(3)	either the zero	homo	morphism or an	isomo	rpmsm			
	(4)	an endomorphi	sm						
89.	If f(x), g(x) are two n	on-zer	o polynomials	ofF[x],	where F is a nor	ntrivial	field then deg (f(x)g((x))
		= (deg f(x)) (de	o o(x	0)	(2)	< (deg f(x)) (d	eg g(x))	
	60.00	$= (\deg f(x)) + ($				< (deg $f(x)$) +			
90.	1155				e rema	inder when f(x)	$= x^2 + 2$	x+5 is divided by x-	4 is
90.	(1)	0	(2)	1	(3)	2	(4)	5	
91.	If W	and W ₂ are two				then the linear	span L	$(W_1 \cup W_2) =$	
			(2)	W_2	(3)	$W_1 + W_2$	(4)	$W_1+W_2-W_1\cap W_2$	
92.	In t	he usual notation	, if the	e vectors (x_i, y_i)	and (x	,, y ₂) of V ₂ (F) ar	re linea	rly dependent then	
	(1)	$x_1 x_2 + y_1 y_2 = 0$	(2)	$x_1y_2-x_2y_1=0$	(3)	$x_1y_1+x_2y_2=0$	(4)	$x_1y_1-x_2y_2=0$	
93.		$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} $ and $\begin{bmatrix} 2 \\ 3 & 4 \end{bmatrix}$						$x (x \in R^2)$ is written a , $(0,1)$ } is	as a
		$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$							
					15-A			(B	SM)
		www.	ma	anare	su	lts.	CO	.in	

87. R, R' are rings and $f: R \to R'$ is a homomorphism and V is an ideal in R. Then f(V)

(1) = R'

(3) is an ideal in f(R)

(2) an isomorphism

88. Any homomorphism from a field into a ring is

(1) the zero homomorphism

(2) is an ideal in R'

(4) is empty

Set Code :	T2
Booklet Code :	A

(1) (3) 95. If A, I (1) 96. If A is	s a <i>mXn</i> matrix om <i>AX</i> = 0 is	tent dempo trices (2)	tent each of c		(2) (4) then n	$A \cdot B$ is id $A+B-A$.	B is idempo			
(1) (3) 95. If A, I (1) 96. If A is system	A+B is idempo A+B+A. B is identified B are square made in a square made in a matrix of ma	tent dempo trices (2)	tent each of c		(2) (4) then n	$A \cdot B$ is id $A+B-A$.	B is idempo			
95. If A, I (1) 96. If A is system	B are square ma = 0 s a mXn matrix of $mAX = 0$ is	trices	each of c	order n	then n		kan markan na n			
96. If A is system	= 0 s a mXn matrix of $mAX = 0$ is	(2)		order n		ullity (AB)	F 67 2010 10			
96. If A is system	= 0 s a mXn matrix of $mAX = 0$ is	(2)		order r		ullity (AB)				
96. If A is system	s a <i>mXn</i> matrix om <i>AX</i> = 0 is	3393	≥0		(2)		-{nullity(/	A)+nullity	(B)}	
system	mAX = 0 is	with ra			(3)	≤ 0	(4).	= Rank (AB)	
(1)	2		ink q the	n the n	umber	of linearly	independer	nt solution	s of the	linear
	2q	(2)	n-q		(3)	m-q	(4)	n-m		
			1	ω	ω^2					
97. If @ is	s a cube root of	unity t	hen ω^2	1	ω is					
		tette	ω	ω^2	1					
(1)	ω	(2)	ω²		(3)	1 _	(4)	0 .		
98 The ei	igenvalues of A	_[5	4]							
you The en	genvalues of 3.	_1	2							
(1) 1	1,4	(2)	1,6		(3)	2,5	(4)	1,2		
97										
99. If u, v	are orthogonal	unit ve	ectors the	en u-	- v =					
(1) 0)	(2)	1		(3)	2	(4)	$\sqrt{2}$		
100 In							40000			
	nner product sp		iy ortnog	onai s				00		
	s linearly depen						independen	ı		
(3)	contains only on	e vect	or		(4)	does not e	xist			

Set Code :	T2
Booklet Code :	A

ANALYTICAL ABILITY

For questions numbered 101 to 110 questions followed by data in the form of two statements are labeled as I and II. You must decide whether the data given in the statements are sufficient to answer the questions. Using the data make an appropriate choice from 1 to 4 as per the following guidelines.

- (1) If the data I alone is sufficient to answer the question, then (1) is the correct answer.
- (2) If the data II alone is sufficient to answer the question, then (2) is the correct answer.
- (3) If the data I and II both are sufficient to answer the question, then (3) is the correct answer.
- (4) If the data I and II both are not sufficient to answer the question, then (4) is the correct answer.
- 101. What is the price of a table?
 - 1: The total price of 3 chairs and 5 tables is Rs. 18,800
 - II: The total price of 6 chairs and 4 tables is Rs. 20,800
- 102. What was the speed of a running train A?
 - 1: The relative speed of train A and another train B running in opposite direction is 160 kmph.
 - II: The train B crosses a signal post in 9 seconds.
- 103. What is the difference between the two digits in a two-digit number?
 - 1: The sum of the two digits is 8
 - II: 1/5 of that number is 15 less than 1/2 of 44.
- 104. What is the monthly income of Q?
 - 1: Q earns Rs.6000 more than R, who earns Rs. 3000 less than P
 - II: The total monthly income of P and Q is Rs. 27000
- 105. What is the ratio of the number of boys and girls in a school?
 - Number of boys is 40 more than the girls
 - II: Number of girls is 80 percent of the number of boys

Set Code :	T2
Booklet Code:	A

06	How many	children are	there	in the	group?
----	----------	--------------	-------	--------	--------

- 1 : Average age of this group is 16 years. The total of ages of all the children in the group is 240 years.
- 11: The total of ages of all the children in the group and the teacher is 26.2 years. The teacher's age is six years more than the average age of the children.
- 107. What is the cost of polishing the rectangular floor?

I : Room is 9 m long and 7 m wide.

II: Cost of polishing the floor of 10 m by 5 m is Rs. 112.50.

108. How long will it take to fill a tank?

One pipe can fill the tank completely in 3 hours.

II : Second pipe can empty the tank in 2 hours.

109. What is Sudha's present age?

I : Sudha's present age is five times her son's present age.

II: Five years ago her age was twenty-five times her son's age at that time.

110. A, B and C can do a work in 30 days. In what time will A alone complete the work?

I : A and B together can do the work in 60 days.

II : C alone can do the work in 60 days.

Questions 111 to 115: Find out the next term of the given series.

111. 2, 5, 9, 14, 20, ---

(1) 25

(2) 26

(3) 27

(4) 28

112. 53, 48, 50, 50, 47, -

(1) 52 (2) 46

(3) 53

(4) 51

113. 0, 7, 26, 63, ---

(1) 124 (2) 126

(3) 215

(4) 217

www.manaresults.co.in

114, 8, 13, 22, 35, ----

(1) 45

(2) 52

(3) 50

(4) 65

115. 97, 86, 73, 58, 41, ---

(1) 54

(2) 55

(3) 56

(4) 20

Questions 116 to 120: Find the missing term of the given series.

116. 5, 10, 13, 26, 29, 58, 61, ----

(1) 122

(2) 64

(3) 125

(4) 128

117. 1, 3, 9, 31, ?, 651

(1) 97

(2) 127

(3) 129

(4) 109

118, 2, 7, 23, ?, 220, 665

(1) 78

(2) 72

(3) 70

(4) 71

119. 3, 15, 75, ?, 1875, 9375

(1) 375

(2) 125

(3) 250

(4) 625 -

120. 9, 16, 25, ?, 49, 64

(1) 29

(2) 26

(3) 36

(4) 40

Questions 121 to 125: Find out the Odd number of the series.

121. 4, 11, 21, 34, 49, 69, 91

(1) 69

(2) 49

(3) 34

(4) 21

122. 8, 17, 37, 79, 165, 338, 689

(1) 17

(2) 79

(3) 165

(4) 338

123. 13, 15, 19, 25, 33, 41, 55

(1) 15

(2) 19

(3) 25

(4) 41

www.manaresults.co.in

Set Code :	
Booklet Code :	A

0.4	-	-	1.	10	45	157.5.	620
74			n	100	43	17/7	ON

(1) 45

(2) 3

(3) 157.5

(4) 12

125. 3, 4, 10, 33, 148, 685, 4116

(1) 685

(2) 10

(3) 4

(4) 148

Directions (Q.126 to 130): Study the following information carefully and answer the questions given below:

Seasonwise Consumption of Fertilizers (000 tonns of nutrients)

				Percent	Share
Year	Kharif	Rabi	Total	Kharif	Rabi
1996-97	6920	7388	14308	48.4	51.6
1997-98	8092	8096	16188	50.0	50.0
1998-99	7834	8964	16798	46.6	53.4
1999-00	9304	9841	19145	48.6	51.4

126.	The consumption of	fertilizers was almost	equal during bot	h the seasons in the year
------	--------------------	------------------------	------------------	---------------------------

(1) 1996-97

(2) 1997-98

(3) 1998-99

(4) 1999-2000

127. Maximum consumption of fertilizers was during

(1) 1998-99

(2) 1996-97

(3) 1999-2000

(4) 1997-98

128. The percent share in the consumption of fertilizers during 1996-2000 was

(1) Less for Kharif

(2) Less for Rabi

(3) Equal for both the seasons

(4) Inadequate data

129. Which season has shown consistent increase in the consumption of fertilizers over the period 1996-2000

(1) Kharif

(2) Rabi

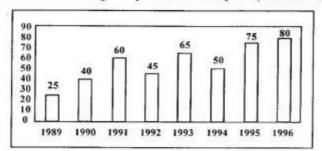
(3) Both

(4) None

130. The difference between the consumption of fertilizers in both the seasons is minimum during

(1) 1996-97

(2) 1997-98


(3) 1998-99

(4) 1999-2000

20-A

Set Code : T2 Booklet Code :

Directions (Q.131 to 135): Study the following graph carefully and answer the questions given below: Production of food grain by a state over the years (1000 tonnes)

131.	The average production of 1990 and 1991 w	as exactly equal to the average production of which
	of the following pairs of years?	

- (1) 1989 & 92
- (2) 1989 & 95
- (3) 1993 & 94
- 1994 & 95
- 132. What is the difference in the production of food grains between 1991 & 1994
 - (1) 10,000 tonnes (2) 15,000 tonnes (3) 500 tonnes

- (4) 5,000 tonnes
- 133. In which of the following years was the percentage increase on production from the previous year the maximum among the given years?
 - (1) 1991
- (2) 1993
- (3) 1995
- (4) 1990
- 134. In how many of the given years was the production of foodgrain more than the average production of the given years?
 - (1) 2
- (2) 3
- (3) 4
- (4) 1
- 135. What was the percentage drop in the production of foodgrain from 1991 to 1992?
 - (1) 15
- (2) 20
- (3) 25
- (4) 30
- 136. If cook is called butler, butler is called manager, manager is called teacher, teacher is called clerk and clerk is called principal, who will teach in a class?
 - (1) manager
- (2) butler
- (3) teacher
- (4) clerk

Set Code :	T2
Booklet Code :	A

137.	Fire	: Ashes :: E	Explosio	on :	?					
	(1)	sound	((2)	debris		(3)	fury	(4)	flame
138.	In a		e FICT	TTE	OUS is v	vritten	as IFTC	CTIOISU. How	is POS	STPONE written in that
	(1)	OPSTOPE	EN ((2)	PSOP1	NOE	(3)	POTSOPEN	(4)	OPTSOPEN
139.	Wha	at would be	the nex	ct te	rm in the	follo	wing ser	ies? P3C, R5F,	T8I, V	12L,
	(1)	Y17O		(2)	X17M		(3)	X170	(4)	X16O
140.	Dee	pak said to ghter of my	Nitin, 'father'	The	at boy pl ife'. Hov	aying v is the	with foo	tball is the you ying football re	nger of	the two brothers of the Deepak?
	- 5	Son			brothe			cousin		nephew
141.	Cho	ose the nur	nber wi	nich	is differ	ent fro	om other	in the group		
	(1)	48		(2)	12		(3)	36	(4)	58
142.	If in	a certain co	de, SW	ЛΤ	CH is wr	itten as	s TVJSD	G, which word	would	be written as CQFZE
	(1)	BREAD		(2)	BARE	D	(3)	BRAED	(4)	BRADE
143.	IfG	IVE is code	ed as 51	37	and BAT	is cod	led as 92	4 how is GATE	coded	?
	(1)	5427	31	(2)	5724		(3)	5247	(4)	2547
144.	Fine	the missin	g term							
		AYD	BVF		DRH	?	KGL			
	(1)	FMI		(2)	GMJ		(3)	HLK	(4)	GLJ
145.	Six and	persons M, P, R is to th	N, O, P	, Q f P.	and R are Who is b	sittin etwee	g around en M and	l a table. N is be I R?	tween l	R and O, M is between Q
	(1)	M		(2)	N		(3)	P	(4)	Q

www.manaresults.co.in

Set Code : T2

Booklet Code : A

146	1630	of a month is 3	days a	fter Sunday, w	hat will	be the day on t	he 15th c	of the same month?
40.		Wednesday		Tuesday	(3)		(4)	Monday
147.	Hov	many times d	o the ha	nds of a clock	coincide	in a day?	1.00040	
	(1)	24	(2)	20	(3)	21	(4)	22
148.	If in	a certain lang	uage 94	3 is coded as	BED an	d 12448 is coo	ied as S	WEET. How is 49231
	(1)	EDSWBS	(2)	TSWBDD	(3)	DSWTEE	(4)	EBWDSS
140	If 4	' means '+'. '-	' means	; '+', '×' mear	ıs '-', '÷'	means 'x' the	en 16 ÷ 8	$-12 + 6 \times 8 = ?$
142		120		122	(3)	124	(4)	128
150	Ant	hropology is re	elated to	man in the sa	me way	as Anthology i	s related	Ito
150	(1)	nature	(2)	apes	(3)	poems.	(4)	flowers
			-					

Set Code :	T2
Booklet Code :[A

COMMUNICATIVE ENGLISH

151.	Fill	in the blank wi				given options:		a austam?
	It h	as, but					neatin	g system?
8		the, a, the		20, 00, 00		an, the, the	(4)	the, the, a
152.	Fill	in the blanks w	ith the	correct article	from th	e given options	:	
	_	attemp	ot has here I li	been made to ve.	collect	funds to start		public library in
	(1)	the, a, the	(2)	an, a, the	(3)	an, the, a	(4)	a, an, the
153.	Cor	nplete the sente	nce wit	th the right pre	position	from the optio	ns give	n below:
	Au	niversity is whe	re you	study	a de	gree.		
	(1)	to	(2)	of	(3)	from	(4)	for
154.	Con	nplete the sente	nce wit	h the right pre	position	from the optio	ns give	n below:
	Eve	n the new drug	could r	ot cure him _		his illness.		
	(1)	from	(2)	by	(3)	of	(4)	on
155.	Use	the correct form	n of the	e tense given i	n the op	tions to fill in th	he blan	k:
	As s	oon as he		(finish) his ex	xams, ho	went to Paris	for a m	onth.
	(1)	had been finish	hed		(2)	had finished		
	(3)	has finished			(4)	would have fir	nished	
156.	Use	the correct form	n of the	tense given in	n the opt	ions to fill in th	ne blank	c
		would save				would have say		
	(3)	had saved			(4)	will save		

Set Code :	T2
Booklet Code :	A

157.	Cho	ose the right of	ption to	fill in the blank	to con	vert the active :	senteno	e into a passive on	e.				
	Mic	hael has not se	nt me a	text message.									
	1_		a text n	nessage.									
	(1)	have not sent			(2)	have not been	sent						
	(3)	has not been	sending		(4)	had not been s	ent						
158.	Cho	ose the best we	ord in th	ne following to	nake tl	ne sentence con	nplete.						
	Nei	ther the directo	r nor th	ne actors	fo	sely.							
	(1)	are	(2)	is	(3)	were	(4)	are not					
159.	Choose the best word in the following to make the sentence complete.												
	Eve	ry one of the cl	erks _	applie	d for c	asual leave toda	ay.						
	(1)	have	(2)	has	(3)	is	(4)	had	20				
160.	Cho	Choose the correct question tag for the following.											
	The	y are repairing	the old	bridge now,		?							
	(1)	are they?	(2)	have they?	(3)	aren't they?	(4)	weren't they?					
161.	lder	ldentify the synonym for the word ABSURD.											
	(1)	reasonable	(2)	sensible	(3)	ridiculous	(4)	convenient					
162.	Iden	tify the synony	m for th	ne word NOVIC	E.								
		beginner		connoisseur ·		expert	(4)	veteran					
163.	Iden	tify the antony	m for th	e word ACQUIT	r.								
	(1)			control	(3)	exonerate	(4)	condemn					
164.	lden	tify the antony	m for th	e word RECED	E.								
BESSA S		leave		abscond	(3)	advance	(4)	retreat					

Set Code : T2
Booklet Code : A

65.	Cho	ose the one, whi	ich can	be substituted	for the	given words/sen	tence.						
	The	period between	two re	igns									
	(1)	anachronism	(2)	interregnum	(3)	gap	(4)	stasis					
66.	Choose the one, which can be substituted for the given words/sentence.												
	One	who has an irre	sistible	e tendency to st	eal								
	(1)	stevedore	(2)	heretic	(3)	iconoclast	(4)	kleptomaniac					
167.	Cho	ose a suffix/pre	fix to f	ill in the blank	with the	e right form of th	he wor	d given in the bracket:					
	The	school has been	ı given	money to	the class rooms. (modern)								
		ity		ising			(4)						
168.	Fill in the blank with the right word:												
	Ass	oon as it saw us	s, the b	ird	awa	ay.							
	(1)	flue	(2)	flew	(3)	flu	(4)	flown					
169.	Fill	in the blanks wi	th the	right word fron	the wo	ords often confu	sed:						
		film starts in a g ne film.	graveya	ard, an	im	age for the decay	ying so	ciety which is the theme					
	(1)	adversary	(2)	apposite	(3)	opposite	(4)	appal					
170.	Fill	in the blanks wi	ith the	right word fron	the wo	ords often confu	sed:						
	We	can't afford to l	oecomo	e	_ abou	t any of our pro-	ducts.						
	(1)	complacent	(2)	complaisant	(3)	complement	(4)	compliment					
171.	lder	ntify which part	of the	sentence is wro	ng:								
	Eve	ry one of the su	rvivors		aircra	ft/have told/the:	same s	tory.					
		1		2		3	4						
	(1)	1	(2)	2	(3)	3	(4)	4					

Set Code :	T2
Booklet Code :	A

									Bookiet Code :	A	
172.	lden	tify whi	ich part o	of the s	sentence	is wrong:					
							s failing/in th	e examina	tion.		
		1			2		3	4			
	(1)	1		(2)	2	(3)	3	(4)	4		
173.	Identify which part of the sentence is wrong:										
	I enj	joyed/du	ring my/	stay ir	/England	d.					
	1	l	2	3	4						
	(1)	1		(2)	2	(3)	3	(4)	4		
174.	Iden	tify wh	ich part o	of the	sentence	is wrong:					
	The	film sho	w/begar	/when	we arriv	ed/in the hall	l.				
		1	2		3	4					
	(1)	1		(2)	2	(3)	3	(4)	4		
175.	Ider	ntify wh	ich part o	of the	sentence	is wrong:					
							aterials/are e	ssential to	the conservation of	/ou	
		1				2			3		
	natu	ıral reso	urces								
		4									
	(1)	1		(2)	2	(3)	3	(4)	4		
176.		ose the		lterna	tive to re	place the <i>ital</i>	icised and w	<i>derlined</i> p	art, which may impo	rov	
	He	could no	t look an	ythin	g in the d	ark room.					
	(1)	look a	t	(2)	see	(3)	see throug	h (4)	watch through		
177.		ose the		lterna	tive to re	place the ital	icised and un	iderlined p	art, which may imp	rov	
	Plea	se mak	e it a poi	nt to s	end your	letter at my	address.				
			address			(2)		ess			
	(3)	upon r	ny addre	SS		(4)	to my addr	ress			
				8							

								Set Code	: T2			
								Booklet Code	: A			
65.		ose the one, whi			for the	given words/ser	ntence.					
		anachronism		interregnum	(3)	gap	(4)	stasis	- 02			
66.		ose the one, whi				given words/se	ntence.		XII			
		who has an irre		100								
	(1)	stevedore	(2)	heretic	(3)	iconoclast	(4)	kleptomaniac				
67.	Cho	ose a suffix/pre school has beer	fix to f	ill in the blank v	with the	e right form of t he class rooms.	he wor	d given in the b	oracket:			
	(1)	ity	(2)	ising	(3)	ize	(4)	un				
68.	Ass	in the blank with oon as it saw us flue	, the b		awa	ay. flu	(4)	flown				
69.	Fill in the blanks with the right word from the words often confused:											
	The	film starts in a g				age for the deca		ciety which is t	he theme			
	(1)	adversary	(2)	apposite	(3)	opposite	(4)	appal				
						. 201	7 76	. 6				
70.		in the blanks wi										
	We	can't afford to b	ecome	:	_ abou	t any of our pro	ducts.	715-7-12 M				
	(1)	complacent	(2)	complaisant	(3)	complement	(4)	compliment				
71.		tify which part										
	Eve	ry one of the su	rvivors	of the ill-fated	aircraf	ft/have told/the	same s	tory.				
		1		2		3	4					
	(1)	1	(2)	2	(3)	3	(4)	4				

72.	Iden	tify whi	ch part o	of the s	entence i	s wrong:			
	Praj	na was t	inhappy/	to hear	the new	s/of her son's	failing/in the ex	aminat	tion.
		1			2	3		4	
	(1)	1		(2)	2	(3)	3	(4)	4
73.	Iden	tify wh	ich part o	of the s	entence i	s wrong:			
	I enj	oyed/du	iring my	stay in	/England	le:			
	- 1		2	3	4				120
	(1)	1		(2)	2	(3)	3	(4)	4
174.	Ider	tify wh	ich part	of the s	entence i	s wrong:			
	The	film she	ow/begar	n/wher	we arriv	ed/in the hall.	Š.		
		1	2		3	4		752023	127
	(1)	1		(2)	2	(3)	3	(4)	4
175.	. Ide	ntify wh	ich part	of the s	sentence	is wrong:			
60070	The	produc	tion of/d	lifferer	nt kinds o	fartificial ma	iterials/are esse	ntial to	the conservation of/our
	877	1				2			3
	nati	ural reso	ources						
	100000	4							
	(1)	1		(2)	2	(3)	3	(4)	4
176	. Che	oose the	correct	alterna	tive to re	place the itali	icised and under	lined p	eart, which may improve
	He	could n	ot <i>look</i> a	nythin	g in the d	ark room.			E111990450004800200
		look			see	(3)	see through	(4)	watch through
177		oose the		alterna	tive to re	place the ital	icised and under	rlined	part, which may improve
	Ple	ase mal	ke it a po	int to	send you	r letter <u>at my</u>	address.		
			y addres		100	(2)			
	(3)		my addr			(4)	to my address	\$	
						27-A			(BSM
						23.78			
							_		

Set Code : T2

Booklet Code : A

								Booklet Code	: A		
78.		ose the correct a	lterna	tive to replace th	he <u>itali</u>	cised and unde	rlined p	art, which may	mprove		
	I hop	pe you won't ob	ject to	me watching w	hile yo	u work.					
	200	me to watch				to my watchir	ng				
	(3)	against me wat	ching		(4)	to watch					
79.		ose the correct a sentence.	lterna	tive to replace th	ne <i>itali</i>	cised and unde	<i>rlined</i> p	art, which may	improve		
	The	dissidents hold	a great	t problem in eve	ery poli	tical party.					
	(1)	try	(2)	give	(3)	cause	(4)	pose			
80.		ose the correct a	lterna	tive to replace th	he <i>itali</i>	cised and unde	<i>rlined</i> p	art, which may	improve		
	Му	opinion for the f	īlm is	that it will bag t	he nati	onal award.					
	(1)	opinion about	(2)	opinion on	(3)	opinion to	(4)	opinion of			
81.	Cho	ose the exact me	eaning	of the idioms/p	hrases	*					
	He !	hurnt his fingers	by int	erfering in his	neighb	or's affair.					
	(1)	got himself ins	sulted		(2)	got himself i	nto trou	ble			
	(3)	burnt himself			(4)	goy rebuked					
82.	Cho	ose the exact me	aning	of the idioms/p	hrases	:					
	l am	just a small fry	in the	office.							
	(1)	peon			(2)	a small creat	ure				
	(3)	humorous			(4)	5 7224 A 72 72 72 72 72 72 72 72 72 72 72 72 72					
83.	Filli	in the blank with	the co	orrect phrasal ve	rb give	en below:					
		car			La marting dis						
		broke away	_	broke down		broke in	(4)	broke off			

Set Code : T2

Set Code :	T2
Booklet Code :	A

184	Fill	in the blank wit	h the co	orrect phrasal v	erb give	en below:				
	The	maid will		your roor	n later.					
	(1)	make over	(2)	make out	(3)	make up	(4)	make with		
185	Fill	in the blank wit	h the co	orrect phrasal v	erb give	en below:				
	Asl	nouse prices have	ve	recently	many a	re planning to	buy one.			
	(1)	come down	(2)	come out	(3)	come up	(4)	come away		
Toa	nswei	the questions 1	86-190,	read the follow	ing pass	age carefully a	nd choos	se the appropriate	option.	
isag	утап		ddles v	veight-loss and	nutritio	on concoctions		balife Internatio ous value. Bad p		
On a and Mea distr	recei perky nwhi ibuto	image adorns r le, in a lawsuit the Daniel Fallo	all with nuch of nat's be w of S	distributors, Ho Herbalife's lit en quietly movi andpoint char	ughes re erature. ng throu ges that	evealed he's di ugh Arizona's ! Herbalife ar	vorcing Superior bitrarily	on the home from his wife whose b Court, former H withholds pays acturing. Randy	erbalife ment to	
Lew	iston	, Idaho also says	, "Herl	palife destroyed	my bus	siness". Will H	ughes st	rvive again?		
186.	Her	balife Inc is bad	ed in:							
	(1)	Austin	(2)	Columbus	(3)	New York	(4)	Los Angels		
187.	Dan	iel Fallow:								
	(1)	was a former	attorne	y for Hughes	(2)	was a former distributor of Herbalife				
	(3)	Co-founded H	lerbalif	ė	(4)	ran Herbalife	's Germ	an unit		
188.	The	complaint of Ra	andy Co	ox of Lewiston,	Idaho,	against Herbal	life was:			
0	(1)	The company	did not	treat them proj	perly					
	(2)	The products	supplie	d by Hughes we	ere infe	rior				
	(3)	Herbalife dest	royed I	nis business						
	(4)	Hughes has co	nnectio	ons with the Ru	ssian m	afia				
					70.4				/05341	

Set Code :	T2
Booklet Code :	A

								400		
189.	. Who says to Hughes, "I can't protect you anymore?									
	(1)	Randy Cox of Lewiston				David Ad	ďis			
	(3)	Daniel Fa	illow		(4)	David Fal	low			
90.	The	word bello	ow is closes	t in meani	ng to:					
	(1)	shout	(2)	whisper	(3)	sigh	(4)	moan		
91.	Cho	ose the cor	rect option	which giv	es meaning	ful sentence				
	env	ironmental	and psycho	logical str	ess and strai	n/he said th	at/the deve	lopment of	positive	
30				A		В		C		
	attit	ude to cope	with/what	the world	needed toda	y was.				
					D	#NUMBER	18			
	(1)	ABCD	(2)	BCDA	(3)	CBAD	(4)	BDCA		
92.	Cho	ose the cor	rect option	which give	es meaningf	ul sentence				
	Choose the correct option which gives meaningful sentence. four degrees below normal/icy winds lashed Srinagar/with minimum temperature registering/									
		Α			В		С	100 4 1012 1020 102		
	which was already in the grip of grueling cold wave conditions									
			D	•	ž.					
	(1)	ADBC	(2)	DABC	(3)	BDCA	(4)	CDAB		
93.	Cho	ose the corr	rect option	which give	es meaningf	ul sentence.				
	his e	entire life/th	ne social we	orker devo	ted/of the p	eople of his	village//to	the upliftm	ent.	
		A	В		1	· C		D		
	(1)	ABCD	(2)	CDAB	(3)	CBAD	(4)	BADC		
94.	Cho	ose the corr	ect option	which give	s meaningf	ul sentence.				
	at the earliest opportunity/having heard of the palmist/I decided to call on him/before I came									
		Α			В		C			
	into	town.								
		D								
))2	(1)	ABCD	(2)	BADC	(3)	CBAD	(4)	BDCA		
					30-A				(BSM)	
		WW	w.m	ana	res	ults	s.co	.in		

Set Code :	T2
Booklet Code :	A

1.721	Choose the correct option which gives meaningful sentence. and find a suitable occasion for presenting them/organize a collection/what usually happens is									
	Α				. В			C		
	that two or three persons/and then choose the gifts.									
					D					
	(1)	CBDA	(2)	ACBD	(3)	CBAD	(4)	BDCA		
196.	6. Could you say it again more slowly?							11		
	(1) Requesting			(2)	Seeking permission					
	(3)	Apologising			(4)	Commandin	ıg			
197.	Excuse me if I'm out of line, but your work has not been adequate lately.									
	(1)	St. 124			(2)	Seeking permission				
	(3)	Apologising			(4)	Complainin	g			
198.	Could I borrow your dictionary?									
	(1)	1) Requesting			(2)	Seeking permission				
	(3)	Apologising			(4)	Commandir	ng			
199.		ow I shouldn't ply I regret what			e remarks ab			ope you n	ow know how	
	(1)	Requesting			(2)	Seeking per	rmission			
	(3)	Apologising			(4)	Commandir	ng			
200.	Hov	v about going to	Hawa	ii for you	r vacation?					
	(1)	Requesting			(2)	Suggesting				
	(3)	Apologising			(4)	Complainin	g			