CIVIL ENGINEERING INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET, DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE,
- Immediately on opening this Question Paper Booklet, check;
 - Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- Use of Calculators, Mathematical Tables and Log books is not permitted. 3.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to 4. his/her branch of Engineering.
- Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Bonklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.
- The OMR Response Sheet will not be valued if the candidate:
 - Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- Timings of Test: 10.00 A.M. to 1.00 P.M. 112
- Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet. 12. leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.

I-A

This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

MATHEMATICS

1. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 =$

- (1) 31 (2) 91

- If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3

 - (1) 64 (2) 268 (3) 512

4. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| = 1$

- (1) 1 . (2) 2

- 5. The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
 - (1) x = -1, y = -2, z = -3
- (2) x = 3, y = 2, z = 1

(3) x = 2, y = 1, z = 3

- (4) x = 1, y = 2, z = 3
- 6. If $\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x ai}$ then A =______, B =______

 - (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$
- 7. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to

 - (1) A, (2) 2A,
- (3) 4A

- 8. The period of the function $f(x) = |\sin x|$ is
 - (1) m
- (2) 2π
- (3) 3n

- If A+B=45°, then (1-cotA). (1-cotB) is
 - (1) 1
- (2) 0
- (3) 2 (4) -1
- 10. The value of sin 78° + cos 132° is

- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$
- 11. If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$
 - (1) 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

- (4) 4 sinA sinB sinC
- 12. The principal solution of Tanx = 0 is
 - (1) $x = n\pi, n \in \mathbb{Z}$

(2) x=0

- (3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$
- (4) $x = n\pi + \alpha, n \in \mathbb{Z}$

3	The value of Ta	m 1/2	+ Tan-1	(3) is
3.	The value of 10	111 12	t tan	12710

- (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{3}$ (4) $\frac{3\pi}{4}$

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

15. The value of
$$rx_1x_2x_3$$
 is

- (1) Δ^2
- (3) A-3
- (4) \(\Delta^4 \)

16.
$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} =$$

- (1) $\frac{1}{r}$ (2) $\frac{1}{2r}$ (3) $\frac{1}{R}$

17. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) cos-1 (2/9)

- (2) cos-1 (2/5) (3) cos-1 (7/9) (4) cos-1 (1/3)

- (1) $\sqrt{2}e^{-i\pi/4}$ (2) $\sqrt{2}e^{i\pi/4}$ (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

19. If 1,
$$\omega$$
, ω^2 be the cube roots of unity, then the value of $2^{\omega^2}.2^{\omega^2}.2^{\omega}$ is

- (1) w
- (2) w2
- (3) 1
- (4) 0

20. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2 c}$

- (2) $\sqrt{f^2-c}$ (3) $2\sqrt{g^2-c}$ (4) $2\sqrt{f^2-c}$

- (1) (3, 1)
- (2) (1, 3)
- (3) (-3, -1) (4) (-1, -3)

22. The radius of the circle
$$\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$$
 is

23. The parametric equations of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 are

- (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta$, $y = a \cos\theta$
- (3) $x = a \cos\theta$, $y = b \sin\theta$
- (4) $x = a \csc\theta$, $y = b \cot\theta$

24. The equation of the directrix of the parabola
$$2x^2 = -7y$$
 is

- (2) 8v-7=0
- (3) 7v+8=0
- (4) 8x-7=0

25. The condition for a straight line
$$y = mx + c$$
 to be a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

- (1) c = a/m
- (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

26.
$$Lt_{x\to 1} \frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$$
 is

- (1) 3 (2) 2 (3) 4

- (1) π/2 (2) π/4
- (3) $i\pi/2$
- (4) iπ/4

28.
$$\frac{d}{dx}[\log_{7}X]=$$

- (1) $\frac{1}{r}$ (2) $X \log_7^e$ (3) $\frac{1}{r} \log_e^7$ (4) $\frac{1}{r} \log_7^9$

29.
$$\frac{d}{dx}[2\cosh x] =$$

- (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

$$30. \quad \frac{d}{dx} \left[\cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) \right] =$$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$

31. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

- (1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$ (4) $\sqrt{\frac{x}{y}}$

32. The derivative of
$$e^x$$
 with respect to \sqrt{x} is

- (1) $\frac{2\sqrt{x}}{e^x}$ (2) $2\sqrt{x}e^x$ (3) $\frac{e^x}{2\sqrt{x}}$

33. The equation of the normal to the curve
$$y = 5x^4$$
 at the point (1, 5) is

(1)
$$x + 20y = 99$$

(1)
$$x + 20y = 99$$
 (2) $x + 20y = 101$ (3) $x - 20y = 99$ (4) $x - 20y = 101$

(3)
$$x - 20y = 99$$

(4)
$$x - 20y = 10$$

34. The angle between the curves
$$y^2 = 4x$$
 and $x^2 + y^2 = 5$ is

- (1) $\frac{\pi}{4}$ (2) $\tan^{-1}(2)$
- (3) tan-1(3)
- (4) tan⁻¹(4)

35. If
$$u = x^3y^3$$
 then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$

- (1) $6(x^3+y^3)$ (2) $6x^3y^3$

36.
$$\int \csc x dx =$$

- (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x \cdot \cot x + C$

7-A

37.
$$\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$$

(1)
$$\frac{256}{693}$$

(1)
$$\frac{256}{693}$$
 (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$ (4) $\frac{128}{693}$

(3)
$$\frac{\pi}{4}$$

$$(4)$$
 $\frac{128}{693}$

38.
$$[f'(x).[f(x)]^n dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

3)
$$n[f(x)]^{n-1} + C$$

(4)
$$(n+1)[f(x)]^{n+1} + 0$$

$$39. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(2)
$$2Tan^{-1}(\sqrt{x+6})+C$$

(3)
$$Tan^{-1}(x+7)+C$$

(4)
$$2Tan^{-1}(x+7)+C$$

40.
$$\int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$
 (2) $\frac{1}{1+x^2} + C$

(2)
$$\frac{1}{1+x^2} + C$$

$$(3) \quad x^2.Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

$$41. \quad \int \frac{dx}{1+e^{-x}} =$$

$$\begin{array}{lll}
J_{1+e^{-x}} \\
(1) & \log (1+e^{-x}) + C \\
(3) & e^{-x} + C
\end{array} (2) & \log (1+e^{x}) + C \\
(4) & e^{x} + C$$

42.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin|x| \, dx =$$

- 43. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3

- 45. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}} = a \frac{d^2 y}{dx^2}$ is
 - (1) 4
- (2) 2
- ' (3) 1
- (4) 3
- 46. The family of straight lines passing through the origin is represented by the differential equation (1) ydx + xdy = 0 (2) xdy - ydx = 0 (3) xdx + ydy = 0 (4) xdx - ydy = 0

- 47. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + hv + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- The solution of differential equation $\frac{dy}{dr} = e^{-x^2} 2xy$ is
 - (1) $y e^{-x^2} = x + c$ (2) $y e^x = x + c$ (3) $y e^{x^2} = x + c$ (4) y = x + c

- 49. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- (2) $C_1 \cos x + C_2 \sin x + C_3 e^x$
- (3) $C_1 + C_2 \cos x + C_3 \sin x$
- (2) $C_1 \cos x + C_2 \sin x + C_3$ (4) $(C_1 + C_2 x + C_3 x^2) e^x$
- 50. Particular Integral of $(D-1)^4y = e^x$ is
 - (1) x4 e1
- (2) $\frac{x^4}{24}e^{-x}$ (3) $\frac{x^4}{12}e^x$ (4) $\frac{x^4}{24}e^x$

Set Code :	T2
Booklet Code :	A

PHYSICS

51.	Tw	o quantities A ance. The dimension	dB are	related by the rel B will be	ation	A/B = m where	m is lii	near mass density and A	i
	(1)	same as that o	flaten	t heat	(2)	same as that o	f pres	sure	
	(3)	same as that o	fwork			same as that o			
52.	The	dimensional for	mula	of capacitance in	terms	of M, L, T and	I is		
		[ML ² T ² J ²]		[ML-2T42]		[M ⁻¹ L ² T ³ I]		[M-1L-2T-12]	
53.	If I,	m and n are the	directi	on cosines of a v	ector,	, then			
	(1)	l+m+n=1	(2)	$l^2 + m^2 + n^2 = 1$	(3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1	
54.	The	angle between i	+i and	i+k is					
		0°		90°	(3)	45°	(4)	60°	
	5 m:	s ⁻¹ northwards. The state of	he ave	erage acceleration	(2)	zero $\frac{1}{\sqrt{2}}$ ms ⁻² towa		s the velocity changes	
56.	The		mofa	particle varies w	ith tin	ne t as p = a + bt	+ct² w	hich of the following	S
	(1)	Force varies wi	th time	e in a quadratic m	anne	r.			
	(2)	Force is time-d		Contraction of the second seco					
	(3)	The velocity of	the pa	rticle is proporti	onal t	o time.		112	
	(4)	The displaceme	ent of	the particle is pro	porti	onal to t.			
57.				vith a velocity v s			two p	nieces. One part of mas	S
	(1)		(2)			3v/4	(4)	4v/3	
				10	A				

Set Code :	T2
Booklet Code :	A

58.	The	velocity of a	freely fal	ling body afte	r 2s is			
	(1)	9.8 ms ⁻¹	(2)	10.2 ms ⁻¹	(3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹
59.				re fired in all o bullets will sp		s with the same	speed u	. The maximum area on
	(1)	$\frac{\pi u^2}{g^2}$	(2)	$\frac{\pi u^4}{g^2}$	(3)	$\frac{\pi u^2}{g^4}$	(4)	$\frac{\pi u}{g^4}$
60.	The the	minimum sto	pping dis	tance for a car between the ty	ofmass res and t	m, moving wi he road is μ, ν	th a spee vill be	d v along a level road, if
		2		v ²		v ²		ν
	(1)	2μg	(2)	нд	(3)	ν ² 4μg	(4)	2μg
61.		that it acts In the backy	vard direc	tion on the fro	ont whee	and in the for	ward dir	nd on the two wheels is
	(2)							ection on the rear wheel
	(3)	In the backy	vard dire	ction on both t	he front	and the rear w	hoels	
	(4)	In the forward	ard direct	ion on both the	e front ar	nd the rear who	eels	
62.	In a	perfectly ine	lastic col	lision, the two	bodies			
	(1)	strike and co	xplode		(2)	explode with	out strik	ing
	(3)	implode and	d explode		(4)	combine and	move to	gether
63.		ler the action er is	of a cons	tant force, a pa	article is	experiencing	a consta	nt acceleration, then the
	(1)	zero			(2)	AND THE RESERVE TO SERVE THE PARTY OF THE PA		
	(3)	negative			(4)	increasing u	niformly	with time

Set Code :	T2
Booklet Code :	A

(2) A does not imply B & B does not imply A

66.	Ifa	spring has tin	ne period	T, and is cut in	to n eq	ual parts, then ti	he time	period wi	II be
	(1)	$T\sqrt{n}$	(2)	$\frac{\mathrm{T}}{\sqrt{n}}$	(3)	пΤ	(4)	Т	
67.	Wh	en temperatur	e increas	es, the frequen	cy of a	tuning fork			
	(1)	increases		AT AT	2	377			90
	(2)	decreases							
	(3)	remains sam	ie						
	(4)	increases or	decrease	s depending or	n the m	aterials			
68.	Ifa					$\frac{d^2x}{dy^2} + \alpha x = 0, \text{ its}$ 2π		42000	
	(1)	$2\pi\sqrt{\alpha}$	(2)	2πα	(3)	$\frac{2\pi}{\sqrt{\alpha}}$	(4)	α	
69.				of 7500 m³. It hall should be	is requi	red to have reve	erberat	ion time of	f 1.5 seconds.
	(1)	850 w-m ²	(2)	82.50 w-m ²	(3)	8.250 w-m ²	(4)	0.825 w-	m²
					12-A				

www.manaresults.co.in

(3) A implies B but B does not imply A (4) A does not imply B but B implies A

65. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a

(3) 8s (4) 10s

64. Consider the following two statements:

(1) A implies B & B implies A

height of 40 m? (Given g = 10 ms-2)

Then

(1) 4s

A: Linear momentum of a system of particles is zero.
 B: Kinetic energy of a system of particles is zero.

(2) 5s

Set Code:	T2
Booklet Code :	A

70.	lo	absorb the so	und in a h	all which	of the follow	ing are use	d		
	(1)	Glasses, st	ores		(2)	Carpets,	curtains		
	(3)	Polished so	urfaces		(4)	Platform	s		
71.	IIN	represents a	vagadro's	number,	then the numb	per of mole	cules in 6 g	m of hydr	ogen at NTP is
		2N		3N	(3)		22000	N/6	
72.	The	mean transla	ational kir	netic ener	gy of a perfec	t gas mole	cule at the t	emperatu	re T K is
	(1)	$\frac{1}{2}kT$	(2)	kT	(3)	$\frac{3}{2}kT$	(4)	2kT	
73.	The	amount of h	eat given	o a body	which raises i	ts tempera	ture by 1°C		
	(1)	water equiv	alent		(2)	thermal h	eat capacity	00	
	(3)	specific he	at		(4)	temperatu	re gradient		
74.		ing an adiaba olute tempera				s is found t	o be propor	tional to	the cube of its
	(1)	$\frac{3}{2}$	(2)	4 3	(3)	2	(4)	5 3	
75.	Clac	iding in the o	ptical fibe	er is main	ly used to				
	(1)	to protect th	he fiber fr	om mech	anical stresse	rs.			
	(2)	to protect ti	ne fiber fr	om corre	osion				
	(3)	to protect th	ne fiber fr	om mech	anical strengt	h			
	(4)	to protect th	ne fiber fr	om electr	omagnetic gu	idance			
		11.							

Set Code :	T2
Booklet Code :	A

CHEMISTRY

76.	The	valency electro	mic co	nfiguration of l	hosph	orous atom (At.)	No. 15) is
	(1)			3s1 3p3 3d1		$3s^23p^23d^1$		3s1 3p2 3d2
77.	An	element 'A' of A	t.No.12	2 combines with	h an ele	ment 'B' of At.N	o.17.	The compound formed is
	(1)		(2)			covalent AB ₂	(4)	
78.	The	number of neut	rons p	resent in the ato	om of	Ba ¹³⁷ is		
	(1)	56	(2)	137	(3)	193	(4)	81
79.	Hyd	drogen bonding	in wate	r molecule is r	esponsi	ble for		
	(1)	decrease in its	freezi	ng point	(2)	increase in its	degree	e of ionization
	(3)	increase in its	boiling	g point	(4)	decrease in its		
80.	Inth	ne HCl molecule	, the bo	onding between	hydro	gen and chlorine	is	
		purely covalen				polar covalent		complex coordinate
81.	Pota	assium metal and	l potas	sium ions		72		
	(1)	both react with	water		(2)	have the same	numbo	er of protons
	(3)	both react with	chlori	ne gas	(4)			onic configuration
82.	stand	dard flask. 10 ml	of this	solution were p	ipetted	water and the so out into another f of the sodium chl	lask ar	made upto 100 ml in a nd made up with distilled solution now is
		0.1 M		1.0 M		0.5 M		0.25 M
83.	Con	centration of a 1	.0 M s	olution of phos	phoric	acid in water is		
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N
84.	Whi	ch of the followi	ing is a	Lewis acid?				
	(1) Ammonia					Berylium chlor	ide	
	(3)	Boron trifluori	de		(4)	Magnesium oxi	de	14
					14-A			

Set Code :	T2
Booklet Code :	A

85.	Whi			nstitutes the con			olution	17			
	(1)			nd potassium hy	droxic	le					
	(2)	Sodium acetat	e and a	cetic acid							
	(3)	Magnesium su	lphate	and sulphuric ac	id						
	(4)	Calcium chlor	ide and	l calcium acetate							
86.	Whi	ch of the follow	ving is	an electrolyte?							
		Acetic acid		Glucose	(3)	Urea	(4)	Pyridine			
87.	$E^0 Cu/Cu^{+2} = (-) 0.34 V.$										
	(1)	(-) 1.0 V	(2)	1.0 V	(3)	(-) 0.78 V	(4)	0.78 V			
88.	A so	lution of nicke	chlori	de was electroly	sed u	sing Platinum e	lectrod	les. After electroly	ysis,		
	(1)	nickel will be	deposi	ted on the anode	(2)	Cl, gas will be liberated at the cathode					
	(3)			ed at the anode		nickel will be	deposi	ted on the cathod	e		
89.	Whi	ich of the follow	ving me	etals will underg	o oxid	lation fastest?		12			
		Cu	(2)			Zinc	(4)	Iron			
90.	Which of the following cannot be used for the sterilization of drinking water?										
	(1)	Ozone			(2)	Calcium Oxy					
	(3)	Potassium Ch	loride		(4)	Chlorine water	r				
91.	A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. Then, its hardness in terms of calcium carbonate equivalent is										
	(1)	1.0 ppm	(2)	1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm			
92.	Sod	a used in the L-	S proc	ess for softening	of wa	iter is, Chemica	lly.				
	(1)	sodium bicart			(2)		nate de	cahydrate			
	(3)	sodium carbo	nate		(4)	sodium hydro	xide (4	10%)			
93.	The	process of cem	entatio	n with zinc pow	der is	known as					
5.5%		sherardizing	(2)	zincing	(3)		g (4)	electroplating			
					15-A	50					

Set Code :	
Booklet Code :	A

94.	Car	rosion of a metal is fastest	t in	
	(1)	rain-water (2) ac	cidulated water (3)	distilled water (4) de-ionised water
95.	Wh	ich of the following is a th	ermoset polymer?	
	(1)		(2)	PVC
	(3)	Polythene	(4)	Urea-formaldehyde resin
96.	Che	emically, neoprene is		
	(1)	polyvinyl benzene	(2)	polyacetylene
	(3)	polychloroprene	(4)	poly-1,3-butadiene
97.	Vul	canization involves heating	of raw rubber with	
	(1)	selenium element	(2)	elemental sulphur
	(3)	a mixture of Se and clem	ental sulphur (4)	a mixture of selenium and sulphur dioxide
98.	Petr	ol largely contains	19	
	(1)	a mixture of unsaturated	hydrocarbons C, - 0	C.
	(2)	a mixture of benzene, tole	uene and xylene	
	(3)	a mixture of saturated hy-	drocarbons C12 - C	4
		a mixture of saturated hy		
99.	Whi	ch of the following gases i	is largely responsib	le for acid-rain?
	(1)	SO, & NO,	(2)	CO, & water vapour
	(3)	CO ₂ & N ₂	(4)	N, & CO,
00.	BOL	Stands for		
	(1)	Biogenetic Oxygen Dema	ind (2)	Biometric Oxygen Demand
	(3)	Biological Oxygen Demar		Biospecific Oxygen Demand

16-A

Set Code :	T2
Booklet Code :	A

CIVIL ENGINEERING

		Civile i		
101.	Stre	ss strain curve is always a straight lir	ne for	
		Elastic materials	(2)	materials obeying Hook's law
	(3)	Elasto-plastic materials	(4)	plastic materials
102.	The	maximum value of Poisson's for an	elastic n	naterial is
	(1)	0.25	(2)	0.5
	(3)	0.75	(4)	1.0
103.		stress at which extension of a materia	al takes p	place more quickly as compared to the increase
	(1)	Elastic point	(2)	Plastic point
	(3)	Breaking point	(4)	Yielding point
104.	For	ductile materials, the most appropria	ate failu	re theory is
	(1)	maximum shear stress theory		
	(2)	maximum principal stress theory		
	(3)	maximum principal strain theory		
	(4)	shear strain energy theory		
105.	The	materials which have the same elast	ie prope	rties is in all directions are
	(1)	Brittle material	(2)	Homogeneous material
	(3)	Isotropic material	(4)	Hard material
106.	wei	elastic bar of length 'l', cross section ght W is having vertically, it is subject gation of the bar is given by	onal area	A, Young's modulus of elasticity E and self- and applied axially at the bottom end. The total
	(1)	WI/AE + PI/AE	(2)	WI/2AE+PI/AE
	(3)	WI/2AE+PI/2AE	(4)	WI/AE + PL/2AE
			17-A	(CVL)

								Booklet Code	: A				
.07	77					e							
107.		The bending moment diagram is a cubic parabola for a cantilever											
	(1)			ar load varying		ero at free end	to maxii	mum at fixed er	nd				
	25.55	with free end											
	(3)	subjected to us	niform	ly distributed lo	ad				167				
	(4)	subjected to co	oncent	rated load at the	free e	nd							
108.	For	a simply suppor	ted bea	am with central	load, th	ne Bending Me	oment w	ill be	0				
	(1)	Least at the ce	ntre		(2)	least at the s	upports						
	(3)	maximum at th	ne supp	orts	(4)	maximum at	the cent	re					
109.	The	B.M on a sectio	n is ma	aximum when sl	hearing	force		6	E .				
		is maximum				is equal	(4)	changes sign					
110.	The	deflection due t	o cour	ole M at the free	end of	a cantilever of	of length	Lis	"				
		ML/EI	(2)			ML ² /2EI	(4)	M ² L/2EI					
111.	The	shear force on a	simpl	v supported bea	ım is bi	roportional to							
		displacement of	26101		100000	sum of the forces							
	5505	algebraic sum			(4)	algebraic sum of axial forces							
112.	The	shape of the ber	nding n	noment diagram	over t	he length of a	beam, ha	wing no extern	al load is				
	(1)	parabolic	(2)	cubical	(3)	linear	(4)	circular					
113.	The	ratio of maxim	ım to a	verage shear st	ress in	a solid circula	r section	ı is					
	(1)	1.0	(2)	1.33	(3)	1.5	(4)	1.7					
114.	The	Poison's ratio f	or corl	cis									
35.00	(1)	zero	(2)	0.1	(3)	0.2	(4)	0.3					
	1.7	10000000	1-1	-5.00	18-A	(00000000000000000000000000000000000000	0.30%	1000F	(CVL)				

Set Code:	T2
Booklet Code :	A

115.	The	sum of the mo	ment of	inertias abor	ut any two	orthogonal axe	s is				
	(1)	always consta	int		(2)	always zero					
	(3)	always one			(4)	always linear		* *			
116.	Stra	in energy in too	rsion of ty and (a shaft per u 3 as modulus	nit volum s of rigidit	e is given by co y	nsideri	ing 'q' as shear stress, E			
	(1)	$q^2/2G$	(2)	$q^2/2E$	(3)	q/4G	(4)	q/4E			
117.	The	maximum shea	ar stress	in a thin tub	e is						
	(1)	equal to avera	nge shea	ır stress	(2)	twice the avera	age sh	ear stress			
	(3)	half the average shear stress			(4)	one third of av	crage	shear stress			
118.	Mac	aulay's method	is used	for calculat	ion of whi	ch quantity					
	(1)	bending mom	ent		(2)	shear force					
	(3)	slope and def	lection		(4)	stresses					
119.	Along the neutral axis of simply supported beam										
AT DES	(1)	기가 되는 경우 내가 하는 것이 되는 것이 없어 있다면 하는 것이 되었다면 살아왔다면 얼마나 나요?				fibers undergo	minin	num strain			
	8000	fibers underg			(4)	fibers undergo minimum stress					
120.	The	area under stre	ss strai	n curve repre	esents						
		work done		ductility		strain energy	(4)	residual stress			
121.	The	maximum defl	ection o	of a cantileve	r beam du	e to pure bendin	g mon	nent (M) at its free end is			
		MI ² /3EI	(2)	MI ² /4EI		Mi²/6EI		MI ² /2EI			
122.	The	shape of kern	area of	rectangular	section is						
		rectangle		square		rhombus	(4)	parallelogram			
123.	Pola	ir modulus of a	section	is a measur	e of stren	gth of section in	1				
	(1)		(2)	shear		torsion	(4)	axial compression			
					19-A			(CVL)			

Set Code :	T2
Booklet Code :	A

124	. Thi	ck cylinders	are analys	ed on the b	asis of					
	(1)	maximum	shear stre	ss theory	(2)	Lame's the	cory			
	(3)	Poisson's t	heory		(4)	Rankine's	theory			
125	. Wh	en one end of	f a fixed b	eam deflec	ts by 'δ' the	en the bendi	ng momen	t at deflec	ted end is	
	(1)	$\frac{2EI6}{L^2}$	(2)	$\frac{3El\delta}{L}$	(3)	$\frac{3EI\delta}{L^2}$	(4)	$\frac{6EI\delta}{L^2}$		
126	. The	flexural rigio	dity of a h	inged end i	s					
		infinity		zero		two	(4)	one		
127	. Buc	kling load ca	n be great	er than crus	shing load i	ſ				
	(1)	column is a	short col	umn	(2)	column ha	s both end	s fixed		
	(3)	column is a	long one		(4)	column both ends hinged				
128	For	a column of l	ength 'L'	having one	end fixed a	nd other end	free, the	equivalent	length is	
	(1)	2L	(2)	L	(3)	L/2	(4)	$L/\sqrt{2}$	100 m	
129		ratio of cripp ends are hinge		s of a colun	ın having b	oth the ends	fixed and	the colum	n whose both	
	(1)	1.0	(2)	2.0	(3)	3.0	(4)	4.0		
130.		maximum hei ity 's' is	ight of a m	asonry dam	of a triangu	ular section v	vhose base	width is 'b	o' and specific	
	(1)	$b\sqrt{s}$	(2)	b.s	(3)	$\sqrt{b}.\sqrt{s}$	(4)	$s\sqrt{b}$		
131.	The	failure wedge	develops	when a reta	aining wall				55	
	(1)	moves away	from the	backfill						
	(2)	moves towa	rds backfi	11						
	(3)	sink downwa	ards							
	(4)	stresses equ	ally by ve	rtical and h	orizontal fo	orces				
					20-A				(CVL)	

Set Code:	T2
Booklet Code :	A

132.	The	lateral earth pre			all.							
	(1)	is equal to mas										
	(2)			epth of the soil								
	(3)											
	(4)	proportional to	o the ir	ternal friction	of the s	oil						
133.		lulus of rapture					***********	i.				
	(1)	flexural tensile			(2)	direct tensile s						
	(3)	compressive s	trength	1	(4)	both flexural &	& tensi	ie strength				
134.	The	fineness modul	us of fi	ne aggregate is	in the	range of						
		2.0 to 3.5		3.5 to 5.0		5.0 to 7.0	(4)	7.0 to 10.0				
105	r-			o ogazganta ch	muld be	in						
155.		making a good o		ie, aggregate sin	(2)							
	5.7	saturated cond			(4)	- The Ball of the Table of the Call of the						
	(3) bone dry condition			(4)	Schii Saturatea Condition							
136.	For	reinforced cem	ent cor	erete the slump	shoule	d be						
	(1)	0 to 5 cm	(2)	2.5 to 7.5 cm	(3)	7.5 to 10 cm	(4)	5 to 12.5 cm				
137.	The	ratio of tensile	to com	pressive streng	th of c	oncrete is						
		0.025	(2)	0.04		0.1	(4)	0.4				
	ionato		0.000									
138.	Des	ign mix concret	le is pro	eferred over no	minal r	nix concrete bed	cause					
	(1)	strength of for	rmer is	more	9350-5	cement conter						
	(3)	it is easy to pr	epare	former at site	(4)	strength of later is less						
139	Wh	ich of the follow	ving do	es not cause un	soundr	ness in cement						
	(1)	free lime			(2)							
	(3)		ate		(4)	silica						
					21-A				(CVL)			

Set Code :	T2
Booklet Code :	

140	. The	partial safety	factor fo	or steel as pe	r IS 456-2	2000 is taken	188		
	(1)	1.15	(2)	1.25	(3)	1.50	(4)	1.75	
141	. In v	vorking stress	design, t	he factor of	safety is a	pplied on			
		ultimate stre			(2)		5		
	(3)	stress at elas	tic limit		(4)	breaking st	ress		
142	. In a	RCC column	if ties an	e not provide	ed, the col	umn is likely	/ to		
	(1)				(2)	fail by crus			
	(3)	behave like a	beam		(4)	fail by tors	ion		
143.	Tod	lesign a colum	n, one sł	ould norma	lly start by	assuming th	ne area of	steel as	
	(1)	1%	(2)	0.15%	(3)	0.5%	(4)	0.75%	
144.	Whi	ch of the follo	wing is	generally no	t designed	for shear			
		a slab			(2)	a cantilever	beam	500	
	(3)	a footing			(4)	a beam			
145.	The	maximum she	ar stress	in a beam of	frectangu	lar section is	given by		
		1.25 times th			(2)				
	(3)	1.75 times the	e averag	c	(4)	2.0 times th	e average		
146.	The	radius of a bar	bend to	form a hook	, should n	ot be less tha	ın		
	(1)	twice the diar	meter		(2)	thrice the d	iameter		
	(3)	four times the	e diamet	er	(4)	five times t	he diamet	er	
147.	Incre	ease in finenes	s moduli	us of aggreg	ate indica	tes			
	(1)	fine grading		55.00	(2)	coarser grad	ding		
	(3)	gap grading			(4)	mixed gradi	ng		
					77.4				(CVI)

Set Code :	T2
Booklet Code :	A

148.	In sla	ab, the minimum	reinf	orcement provi	ded is (for Fe 250 Grad	le)		
		0.10% of its gr			(2)	0.12% of its gr	oss se		
		0.15% of its gr			(4)	0.18% of its gr	oss so	ctional area	
149.	The	diameter of long	itudin	al bars of a colu	umn sho	ould never be les	s than	- 	
		6 mm		8 mm	(3)		(4)	12 mm	
150	A co	olumn is regarde	d as l	ong column if t	the ratio	of its effective			nension
	(1)	10	(2)	12	(3)	20	(4)	25	
151	The	shear reinforcer	nent i	n RCC is provid	ded to r	esist			
	(1)	vertical shear				horizontal she			
	(3)	diagonal comp	ressio	n	(4)	diagonal tensi	on		
152	. The	maximum ratio	of spa	n to depth of a s	slab sim	ple supported a	nd spar	nning in two dire	ection, is
		25		30	(3)	35	(4)	40	
153	. If c	oncrete grade is	M-20	then what woul	ld be the	e modular ratio			
		7.08		9.08		12	(4)	13.33	
154	. For	stairs spanning	horizo	ntally the minir	num wa	nist provided is			
		4 cm		6 cm	(3)	10 cm	(4)	12 cm	
155	s. If T	and R are tread	and ri	se respectively	of a sta	ir, then		10	
		2R + T = 60	(2)	R + 2T = 60	(3)	2R + T = 30	(4)	R + 2T = 30	
156	5. Inv	ar tape is made	of an a	lloy of	and	steel.			
		Copper		Zinc	(3)	Nickel	(4)	Bronze	
		**			23-A				(CVL)

								Booklet Code : A
157.	Wal	king over the area	and o	bserving its m	ain featu	res and bound	laries, is k	nown as survey.
	(1)	Topographical	(2)	Cadastral	(3)	City	(4)	Reconnaissance
158.		sum of the exter e number of its s		gles of a close	ed traver	se is equal to		_ Right angles, where n
	(1)	(2n-4)	(2)	(2n + 4)	(3)	(4n - 2)	(4)	(4n + 2)
159.	Ifth	e whole circle be	earing	of a line is 27	0°, then	its bearing in	quadrant	tal system is
	(1)	90°W	(2)	90°E	(3)	180°W	(4)	180°E
160.		ne which passes the cross hair, is o			entre of	the objective	and also	through the intersection
	(1)	Line of collima	ation		(2)	Axis of tele	scope	
	(3)	Horizontal axis			(4)	Trunion axis		

Set Code: T2

160.		ne which passes ne cross hair, is			ntre of	the objective ar	nd also	through the intersection
	(1)	Line of collim	ation		(2)	Axis of telesc	ope	
	(3)	Horizontal axis	s		(4)	Trunion axis		
161.		L. of a B.M. is 2 on, is	00.00	m, back sight is	1.525	m and foresight	is 3.28	5 m, R.L. of the forwar
	(1)	198.460m	(2)	201.760m	(3)	198.240m	(4)	201.525m
162.	In tr	apezoidal formu	ıla of a	areas, the line jo	ining t	he ends of the	ordinate	es is assumed
	(1)	semi circular	(2)	straight	(3)	parabolic	(4)	circular
163.	1 / 0	ere is equal to						
	(1)	43560 sq.ft	(2)	34560 sq.ft	(3)	54360 sq.ft	(4)	64350 sq.ft
164.	lfa	tacheometer is f	itted w	ith anallatic ler	15			
	(1)	Additive const	ant is	100, multiplyin	g const	ant is 0		
	(2)	Additive const	ant is	0, multiplying o	onstan	t is 100		
	(3)	Both additive of	onsta	nt and multiplyi	ng con	stant are 100		
	(4)	Both additive of	onsta	nt and multiplyi	ng con	stant are 50		
	175-000							

24-A

								Set Code :	T2
								Booklet Code :	A
65.	One	S.I. unit of vis	cosity i	s equal to					
	(1)	10 poises	(2)	981 poises	(3)	9.81 Ns/m ²	(4)	10 kg/sec/m ²	
66.	8 m	of oil (sp.Gr. =	0.8) he	ad is equal to th	he follo	wing water hea	d		
	(1)	10 m	(2)	8 m	(3)	6.4 m	(4)	1 m	

167. A vertical triangular area of altitude h has one side in the free surface of a liquid. Its vertex is downward. The depth of its centre of pressure is

downward. The depth of its centre of pressure is
(1) 0.8 h (2) 0.75 h (3) 0.5 h (4) h/3

- 168. The equation of continuity
 - (1) is valid for incompressible fluids
 - (2) expresses the relation between mass and area of cross-section
 - (3) relates the density variations along a stream line
 - (4) relates the mass rate of flow along a stream tube
- 169. Flow of a fluid from low pressure to high pressure is
 - (1) possible in upward flow through a uniform vertical line
 - (2) possible in flow through a converging pipe with horizontal axis
 - (3) possible in flow through a diverging pipe with a horizontal axis
 - (4) impossible if the passage has a constant cross-section
- 170. Differential manometers are used for measuring
 - (1) velocity of fluid at a point
 - (2) pressure of fluid at a point
 - (3) discharge of fluid
 - (4) difference of pressure between two points

25-A (CVL)

								5	Set Code : T2
									et Code : A
171.	The	pressure at veni	ı-contr	acta of an extern	al mo	uthpiece is			
				ration vapor pres					
	(2)			al to square of c			traction		
	(3)			tmospheric pres					
	(4)			d over the mouth					
172.	AV	notch is consid	ered to	be a better note	h beca	usc			
	(1)	its Ca is practi	cally u	niform over a w	ide ran	ge of head	is		
	(2)			e contraction of					
	(3)			hin a reasonable			rge discharg	es	
	(4)	Its C_d is small	er						
		error of 1 mm is 3m the percent			ureme	nt of head			notch. If the head
	(1)	0.5	(2)	0.6	(3)	1.0	(4)	1.5	.v
174.	The	Hagen-Poiseui	le equ	ation gives					
	(1)	head loss in la	minar	flow					
	(2)	boundary shea	ır stres	s in laminar flow	1				
	(3)	shear stress di	stribut	ion in any pipe f	low				
	(4)	velocity distri	bution	in any pipe flow					
175.	The	loss of head du	e to fri	ction in turbuler	t flow				
	(1)	varies as cube	of ave	rage velocity	(2)	varies in	versely as so	uare o	f average velocity
	(3)	varies as squa	re of a	verage velocity	(4)	is direct	y proportion	nal to a	verage velocity
176.	Lan	ninar flow throu	gh a pi	pe, the velocity	distrib	ution curv	e is		
		logarithmic	WIT. (20.143)			paraboli			

26-A

(3) elliptical

(4) hyperbolic

Set Code :	T2
Booklet Code :	A

 Combana	et economical	teanezoidal	section of	an open	channel

- (1) depth of flow = twice base width
- (2) depth of flow = hydraulic radius
- (3) sloping side = half the top width
- (4) sloping side = base width

178. Froude's number is defined as the ratio of

- (1) Inertia force to viscous force
- (2) Inertia force to elastic force
- (3) Inertia force to pressure force
- (4) Inertia force to gravity force
- 179. The critical velocity for a flow of q m3 width of a wide rectangular channel is given by

(1)
$$\left(\frac{g^2}{g}\right)^{\frac{1}{2}}$$

(2)
$$(q^2g)^{1/2}$$

(3)
$$\left(\frac{g}{q^2}\right)^{\frac{1}{2}}$$

180. The function of scroll case of a reaction turbine is to

- (1) Guide the water to the runner at appropriate angle
- (2) Guide the water smoothly to the tailrace
- (3) Distribute the water evenly around the wheel
- (4) Reduce the eddy and shock losses

181. The runner blades of a Kaplan turbine are

- (1) More curved than propeller blades
- (2) More curved than pelton blades
- (3) More curved than Francis blades
- (4) Less curved than Francis blades

182. When the speed of a centrifugal pump is constant

- (1) Shaft power decreases with increase of Q
- (2) H_m decreases with increase of Q
- (3) Q increases with increase of H_m
- (4) Q is independent of H_m

(CVL)

27-A

								Set Code: T2	J
								Booklet Code : A	
183.	The	optical square i	s based	d on the princip	le of op	tical			
	(1)	reflection			(2)	refraction			
	(3)	double reflect	ion		(4)	double refrac	ction		
184.	Λre	servoir provide	d at the	intake head wo	orks fro	m which wate	r enters	the penstocks is	
	(1)	power canal	(2)	tail rack	(3)	fore bay	(4)	trash rack	
185.	Con	sumptive use is	:						
	(1)	water used up	in plan	t metabolism					
	(2)	sum of evapo-	transpi	ration and amo	unt use	d up in plant m	etabolis	m	
	(3)	sum of evapo-	transpi	iration and infil	tration	losses			
	(4)	combined use	of surf	ace and ground	water	resources			
186.	The	head under whi	ch a cc	ntrifugal pump	works i	s called			
	(1)	piezometric he	ad		(2)	pressure hea	d		
	(3)	suction head			(4)	manometric	head		
187.		volume of waterial is known as		can be extracte	ed by fe	orce of gravity	from a	unit volume of aquife	r
	(1)	specific capac	ity		(2)	specific yield	d		
	(3)	specific retent	tion		(4)	specific stor	age		
188.	One	cumec day is e	qual to						
	(1)	8.64 hectare n	netres		(2)	86.4 hectare	metres		
	(3)	864 hectare m	etres		(4)	0.864 hectar	e metre	S.	
189.	Lace	ey considered cl	hannel	section					
	(1)	Rectangular	(2)	Trapezoidal	(3)	Semi elliptic	al (4)	Elliptical	

Set Code:	T2
Booklet Code:	A

190.	Lane	is said to be water logged when						
	(1)	Gravity drainage is ceased	(2)	~ 0.000 PB CBCCCC BEST BEST BEST WITH BEST BEST BEST AND BUT BEST BEST AND BUT BEST BEST BEST BEST BEST BEST BEST BES				
	(3)	Salinity of soil increases	(4)	Capillary fringe reaches root zone of plants				
191.	Hyd	raulic jump occurs when the flow o	hanges fro	om				
	(1) super critical to sub critical		(2)					
	(3)		(4)	laminar to turbulent				
192	Stre	ams that contribute to the ground v	vater are c	alled				
	(1)	Effluent streams	(2)	Ground water stream				
	(3)	Influent streams	(4)	Perennial stream				
193.	Rati	Rational method correlates						
	(1)	Run off coefficient with intensity of rainfall						
	(2)	Run off co efficient with drainage area						
	(3)	Drainage area with intensity of rainfall						
	(4)	Intensity of rainfall with run off						
194	The example of multiple Arch type Buttress dam in India is							
	(1)	Mir-Alam dam	(2)	Khadakwasla Dam				
	(3)	ldikki dam	(4)	Koyna dam				
195	. Sur	charge storage of reservoir is the v	olume of	water stored between				
	(1)	Normal pool level and maximum pool level						
	(2)	Maximum pool level and minimum pool level						
	(3)	Minimum pool level and normal pool level						
	(4)	Normal pool level and revert bed level						

www.manaresults.co.in

Set Code :	T2
Booklet Code :	A

196.	Seepage endangers the stability of an earth dam built on pervious foundation because of piping which depends on									
	(1)	height of dam	(2)	quantity of seepage f	flow					
	(3)	value of exit gradient	(4)	total reservoir storage capacity						
197.	Inverted filter for providing foundation drainage has									
	(1)) multi layers of soil particles of same permeability								
	(2)	multi layers in which permeability increases from top to bottom								
	(3)	multi layers in which permeability increases from bottom to top								
	(4)	only one layer of soil								
198.	Gra	Gravity dams transfer load to foundation by								
	(1)	Arch action	(2)	Cantilever action						
	(3)	Both arch and cantilever action	(4)	Cohesion						
199.	A cl	nute spill way is generally provided w	ith							
	(1)	Aweir	(2)	A barrage						
	(3)	Concrete gravity dam	(4)	An earth dam						
200.	The	The function of surge tank is to								
	(1)	avoid flow in reverse direction								
	(2)	smoothen the flow								
	(3)	act as a reservoir for emergency condition								
	(4)	relieve the pipe line of excessive pressure transients								
			30-A			(CVL)				