(CVL)

CIVIL ENGINEERING

INSTRUCTIONS TO CANDIDATES

Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE,

Immediately on opening this Question Paper Booklet, check;

- Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
- In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.

Use of Calculators, Mathematical Tables and Log books is not permitted.

Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.

Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page 5... is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.

- Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response 6. Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.

The OMR Response Sheet will not be valued if the candidate:

- Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
- Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.

Adopts any other malpractice.

- Rough work should be done only in the space provided in the Question Paper Booklet.
- No loose sheets or papers will be allowed in the examination hall.

Timings of Test: 10.00 A.M. to 1.00 P.M.

- Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet. 12. leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.

14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

(CVL)

MATHEMATICS

1. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 =$

- (1) 3I (2) 9I
- (3) 271
- If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268
- (3) 512

4. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| =$

- (1) 1 . (2) 2
- (3) 3

- The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
 - (1) x = -1, y = -2, z = -3
- (2) x = 3, y = 2, z = 1

(3) x = 2, y = 1, z = 3

- (4) x = 1, y = 2, z = 3
- 6. If $\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x ai}$ then A = _____, B = _____.
 - (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

- 7. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to

 - (1) A, (2) 2A₂
- (3) 4A,

- 8. The period of the function $f(x) = |\sin x|$ is
 - (1) π
- (2) 2π
- (3) 3π

- If A+B=45°, then (1-cotA). (1-cotB) is
 - (1) 1
- (2) 0
- (3) 2
- (4) -1

- 10. The value of sin 78° + cos 132° is

- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$
- 11. If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$
 - (1) 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

- (4) 4 sinA sinB sinC
- 12. The principal solution of Tanx = 0 is
 - (1) $x = n\pi, n \in \mathbb{Z}$

(2) x=0

(3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$

(4) $x = n\pi + \alpha, n \in \mathbb{Z}$

Set Code :	T2
Booklet Code :	A

13.	The value	of Tan-1	(2)	+ Tan-1	(3)) is

- (1) $\frac{\pi}{4}$
- (2) $\frac{\pi}{2}$
- (3) $\frac{\pi}{3}$

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

15. The value of
$$r.r_1.r_2.r_3$$
 is

- ∆²
- (2) Δ⁻²
- (4) Δ⁴

16.
$$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} =$$

- (1) $\frac{1}{r}$ (2) $\frac{1}{2r}$
- (3) $\frac{1}{R}$

17. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) cos-1 (2/9)
- (2) cos⁻¹ (2/5) (3) cos⁻¹ (7/9) (4) cos⁻¹ (1/3)

18. The polar form of complex number
$$1-i$$
 is

- (1) $\sqrt{2}e^{-i\pi/4}$ (2) $\sqrt{2}e^{i\pi/4}$ (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

19. If 1,
$$\omega$$
, ω^2 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is

- (1) w
- (2) ω^2
- (3) 1
- (4) 0

20. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$ (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

21. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is

- (1) (3, 1)
- (2) (1,3)
- (3) (-3, -1) (4) (-1, -3)

- 22. The radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$ is
 - (1) 2c
- (2) 4c
- (4) c
- 23. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are
 - (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta$, $y = a \cos\theta$
- (3) $x = a \cos\theta$, $y = b \sin\theta$
- (4) $x = a \csc\theta$, $y = b \cot\theta$
- 24. The equation of the directrix of the parabola $2x^2 = -7y$ is
 - (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0
- (4) 8x-7=0
- 25. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is (2) $c^2 = a^2m^2 - b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

- 26. Lt $\frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$ is

- (1) 3 (2) 2 (3) 4 (4) 1
- 27. $\log i =$
- (1) $\pi/2$ (2) $\pi/4$ (3) $i\pi/2$
- (4) $i\pi/4$

- 28. $\frac{d}{dx}[\log_7 X] =$
- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_e^7$ (4) $\frac{1}{x} \log_7^e$

- 29. $\frac{d}{dx}[2\cosh x] =$
 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

$$30. \quad \frac{d}{dx} \left[\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right] =$$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$

31. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

- (1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$ (4) $\sqrt{\frac{x}{v}}$

32. The derivative of
$$e^x$$
 with respect to \sqrt{x} is

$$(1) \quad \frac{2\sqrt{x}}{e^x}$$

$$(2) \quad 2\sqrt{x}\,e^x$$

(1)
$$\frac{2\sqrt{x}}{e^x}$$
 (2) $2\sqrt{x}e^x$ (3) $\frac{e^x}{2\sqrt{x}}$

$$(4) \quad \sqrt{x}.e^{x}$$

33. The equation of the normal to the curve
$$y = 5x^4$$
 at the point (1, 5) is

(1)
$$x + 20y = 99$$

(2)
$$x + 20y = 101$$

(1)
$$x + 20y = 99$$
 (2) $x + 20y = 101$ (3) $x - 20y = 99$ (4) $x - 20y = 101$

(4)
$$x - 20y = 101$$

34. The angle between the curves
$$y^2 = 4x$$
 and $x^2 + y^2 = 5$ is

$$(1) \quad \frac{\pi}{4}$$

(1)
$$\frac{\pi}{4}$$
 (2) $\tan^{-1}(2)$

35. If
$$u = x^3y^3$$
 then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$

- (1) $6(x^3+y^3)$ (2) $6x^3y^3$

36.
$$\int \csc x \, dx =$$

- (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x.\cot x + C$

7-A

Set Code : T2

Booklet Code :

37.
$$\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$$

- (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$

38.
$$\int f^{1}(x) \cdot [f(x)]^{n} dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$

2)
$$\frac{[f(x)]^{n+1}}{n+1} + C$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

$$(n+1)[f(x)]^{n+1}+C$$

$$39. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(2)
$$2Tan^{-1}(\sqrt{x+6})+C$$

(3)
$$Tan^{-1}(x+7)+C$$

(4)
$$2Tan^{-1}(x+7)+C$$

40.
$$\int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$
 (2) $\frac{1}{1+x^2} + C$

(2)
$$\frac{1}{1+x^2} + C$$

(3)
$$x^2.Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

$$41. \quad \int \frac{dx}{1 + e^{-x}} =$$

(1)
$$\log (1+e^{-x}) + C$$
 (2) $\log (1+e^{x}) + C$ (3) $e^{-x} + C$ (4) $e^{x} + C$

(2)
$$\log (1+e^x) + C$$

(3)
$$e^{-x} + 0$$

$$42. \quad \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin|x| \, dx =$$

- (1) 0
 - (2) 1
- (3) 2 (4) -1

- 43. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- The order of $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3
- (4) 2

- 45. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}} = a \frac{d^2 y}{dx^2}$ is
 - (1) 4
- (2) 2
- (3) 1
- (4) 3
- 46. The family of straight lines passing through the origin is represented by the differential equation (1) ydx + xdy = 0 (2) xdy - ydx = 0 (3) xdx + ydy = 0 (4) xdx - ydy = 0

- 47. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + bv + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y.e^{-x^2} = x + c$ (2) $ye^x = x + c$
- (3) $ye^{x^2} = x + c$ (4) y = x + c
- 49. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- (2) $C_1 \cos x + C_2 \sin x + C_3 e^x$ (4) $(C_1 + C_2 x + C_3 x^2) e^x$
 - (3) $C_1 + C_2 \cos x + C_3 \sin x$
- 50. Particular Integral of $(D-1)^4 y = e^x$ is
- (2) $\frac{x^4}{24}e^{-x}$ (3) $\frac{x^4}{12}e^x$ (4) $\frac{x^4}{24}e^x$

Set Code :	T2
Booklet Code :	

PHYSICS

51. Two quantities A and B are related by the relation A/B = m where m is linear mass density and A is

(2) same as that of pressure

(4) same as that of momentum

force. The dimensions of B will be
(1) same as that of latent heat

(3) same as that of work

52.	The	dimensional for	mula e	of capacitance i	n terms	of M, L, T and	His		
	(1)	$[ML^2T^2J^2]$	(2)	[ML-2T412]	(3)	$[M^{-1}L^3T^3I]$	(4)	$[M^{-1}L^{-2}T^4I^2]$	
53.	If 1,	m and n are the	directi	on cosines of a	vector,	then			
	(1)	l+m+n=1	(2)	$l^2+m^2+n^2=$	1 (3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1	
54.	The	angle between i							
	(1)	0°	(2)	90°	(3)	45°	(4)	60°	
55.	5 m	article is moving s-1 northwards. T	he ave	rage acceleration	ocity of on in th	5 ms ⁻¹ . In 10 s is time is	econds	the velocity ch	anges to
	(1)	$\frac{1}{\sqrt{2}}$ ms ⁻² toward	ds nort	h-west	(2)	zero			
	(3)	$\frac{1}{2}$ ms ⁻² towards	s north		(4)	$\frac{1}{\sqrt{2}}$ ms ⁻² towa	ards nor	th-east	
6.	The	linear momentur	n of a	particle varies v	with tin	the t as $p = a + b$	t+ct² w	hich of the follo	owing is
	(1)	Force varies wi	th time	in a quadratic	manner	:			
	(2)	Force is time-d							
	(3)	The velocity of	the pa	rticle is propor	tional t	o time.		15	
	(4)								
7.	A sh	ell of mass m mo	ving w	vith a velocity v	sudden	ly explodes int	o two p	ieces. One part	of mass

10-A

(3) 3v/4

(4) 4v/3

m/4 remains stationary. The velocity of the other part is

(2) 2v

(1) v

The	velocity of a	freely fal	ling body afte	r 2s is			*
(1)	9.8 ms ⁻¹	(2)	10.2 ms ⁻¹	(3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹
					s with the same	speed u	. The maximum area on
(1)	$\frac{\pi u^2}{g^2}$	(2)	$\frac{\pi u^4}{g^2}$	(3)	$\frac{\pi u^2}{g^4}$	(4)	$\frac{\pi u}{g^4}$
The the c	minimum stop coefficient of	pping dis friction l	tance for a car between the ty	of mass res and t	m, moving with he road is μ, ν	th a spee vill be	d v along a level road, it
(1)	$\frac{v^2}{2\mu g}$	(2)	$\frac{v^2}{\mu g}$	(3)	$\frac{v^2}{4\mu g}$	(4)	$\frac{v}{2\mu g}$
		in motio	on, the force o	f friction	excreted by t	he grou	nd on the two wheels is
(1)	In the backw	ard direc	ction on the fro	nt whee	and in the for	ward dir	ection on the rear wheel
(2)	In the forwar	rd directi	on on the fron	t wheel a	nd in the back	ward dir	ection on the rear wheel
(3)							
(4)	In the forwa	rd direct	ion on both the	e front ar	nd the rear who	eels	3
In a	perfectly inel	astic col	lision, the two	bodies			
	•				explode with	out strik	ing
		•		(4)	combine and	move to	gether
		of a cons	tant force, a pa	ırticle is	experiencing a	a consta	nt acceleration, then the
•				(2)	positive		
(3)	negative			(4)	increasing ur	iformly	with time
	(1) A la the g (1) The the c (1) Who such (1) (2) (3) (4) In a (1) (3) Und pow (1)	(1) 9.8 ms^{-1} A large number of the ground on whith the ground the coefficient of the coefficient of the coefficient of the ground the	 9.8 ms⁻¹ (2) A large number of bullets athe ground on which these πu²/g² (2) The minimum stopping distinct coefficient of friction to the coefficient of frict	 (1) 9.8 ms⁻¹ (2) 10.2 ms⁻¹ A large number of bullets are fired in all of the ground on which these bullets will specified in the ground on which these bullets will specified in the ground on which these bullets will specified in the ground on which these bullets will specified in the ground on the for a care the coefficient of friction between the ty (1) v²/2μg (2) v²/μg When a bicycle is in motion, the force of such that it acts (1) In the backward direction on the from the forward direction on the from the forward direction on both the forward direction on bot	A large number of bullets are fired in all directions the ground on which these bullets will spread is (1) $\frac{\pi u^2}{g^2}$ (2) $\frac{\pi u^4}{g^2}$ (3) The minimum stopping distance for a car of mass the coefficient of friction between the tyres and to (1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) When a bicycle is in motion, the force of friction such that it acts (1) In the backward direction on the front wheel (2) In the forward direction on the front wheel (3) In the backward direction on both the front (4) In the forward direction on both the front at (1) a perfectly inelastic collision, the two bodies (1) strike and explode (2) (3) implode and explode (4) Under the action of a constant force, a particle is power is (1) zero (2)	(1) 9.8 ms^{-1} (2) 10.2 ms^{-1} (3) 18.6 ms^{-1} A large number of bullets are fired in all directions with the same the ground on which these bullets will spread is (1) $\frac{\pi u^2}{g^2}$ (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ The minimum stopping distance for a car of mass m , moving with the coefficient of friction between the tyres and the road is μ , ν (1) $\frac{\nu^2}{2\mu g}$ (2) $\frac{\nu^2}{\mu g}$ (3) $\frac{\nu^2}{4\mu g}$ When a bicycle is in motion, the force of friction excreted by the such that it acts (1) In the backward direction on the front wheel and in the form (2) In the forward direction on both the front and the rear who (3) In the backward direction on both the front and the rear who (4) In the forward direction on both the front and the rear who (4) In the such that it collision, the two bodies (1) strike and explode (2) explode with (3) implode and explode (4) combine and Under the action of a constant force, a particle is experiencing apower is (1) zero (2) positive	(1) 9.8 ms^{-1} (2) 10.2 ms^{-1} (3) 18.6 ms^{-1} (4) A large number of bullets are fired in all directions with the same speed u the ground on which these bullets will spread is (1) $\frac{\pi u^2}{g^2}$ (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) The minimum stopping distance for a car of mass m , moving with a spee the coefficient of friction between the tyres and the road is μ , will be (1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) When a bicycle is in motion, the force of friction excreted by the ground such that it acts (1) In the backward direction on the front wheel and in the forward direction (3) In the backward direction on both the front and the rear wheels (4) In the forward direction on both the front and the rear wheels (5) In the forward direction on both the front and the rear wheels (8) In the forward direction on both the front and the rear wheels (9) In the forward direction on both the front and the rear wheels (1) In the forward direction on both the front and the rear wheels (1) In the forward direction on both the front and the rear wheels (1) In the forward direction on both the front and the rear wheels (1) In the forward direction on both the front and the rear wheels (2) In the forward direction on both the front and the rear wheels (3) In the forward direction on both the front and the rear wheels (4) In the forward direction on both the front and the rear wheels (1) In the forward direction on both the front and the rear wheels (2) explode without strike and explode (3) implode and explode (4) combine and move to the first the forward of the first the forward of the first the f

11-A

64	Canaidan	AL - C	11		
64.	Consider	ine to	Howing	TWO	statements

A: Linear momentum of a system of particles is zero.

B: Kinetic energy of a system of particles is zero.

Then

1	(1)) A im	plies E	& R	imn	ies A
1		,	DITOST	<i>y</i> oc D	unip.	HC3 F

(2) A does not imply B & B does not imply A

(3) A implies B but B does not imply A (4) A does not imply B but B implies A

65. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of 40 m? (Given $g = 10 \text{ ms}^{-2}$)

(1) 4s

66. If a spring has time period T, and is cut into n equal parts, then the time period will be

(1) $T\sqrt{n}$

(2)
$$\frac{\mathrm{T}}{\sqrt{n}}$$

When temperature increases, the frequency of a tuning fork

- (1) increases
- (2) decreases
- (3) remains same
- (4) increases or decreases depending on the materials

68. If a simple harmonic motion is represented by
$$\frac{d^2x}{dy^2} + \alpha x = 0$$
, its time period is

(1) $2\pi\sqrt{\alpha}$ (2) $2\pi\alpha$

(3) $\frac{2\pi}{\sqrt{g}}$ (4) $\frac{2\pi}{g}$

 A cinema hall has volume of 7500 m³. It is required to have reverberation time of 1.5 seconds. The total absorption in the hall should be

(1) 850 w-m²

(2) 82.50 w-m²

(3) 8.250 w-m²

(4) 0.825 w-m²

Set Code :	T2
Booklet Code :	A

70.	Toa	absorb the so	und in a h	all which	h of the follow	ing are used	1		
	(1)	Glasses, st	ores		(2)	Carpets, o	curtains		
	(3)	Polished su	urfaces		(4)	Platforms	3		
71.	IfN	represents a	vagadro's	number	, then the numb	per of mole	cules in 6 gr	m of hydrog	gen at NTP is
		2N		3N	(3)			N/6	
72.	The	mean transla	ational kir	etic ene	ergy of a perfec	t gas mole	cule at the to	emperature	TK is
	(1)	$\frac{1}{2}kT$	(2)	kT	(3)	$\frac{3}{2}kT$	(4)	2kT	
73.	The	amount of he	eat given t	o a body	which raises i	ts temperat	ure by 1°C		
	(1)	water equiv	alent		(2)	thermal he	eat capacity		
	(3)	specific hea	at		(4)	temperatu	re gradient		
74.	Duri	ing an adiaba olute tempera	tic proces	ss, the pr	ressure of a gas o/Cv for gas is	s is found to	o be propor	tional to th	e cube of its
	(1)	$\frac{3}{2}$	(2)	$\frac{4}{3}$	(3)	2	(4)	5 3	
75.		lding in the o							
	(1)	to protect th	ne fiher fr	om mec	hanical stresse	94			

(2) to protect the fiber from corrosion

(3) to protect the fiber from mechanical strength

(4) to protect the fiber from electromagnetic guidance

Set Code : T2

Booklet Code : A

CHEMISTRY

76.	The	valency electro	onic co	nfiguration of	Phosph	orous atom (At.)	No. 15) is
		$3s^2 3p^3$		3s1 3p3 3d1		$3s^2 3p^2 3d^1$		3s1 3p2 3d2
77.	An	element 'A' of A	t.No.1	2 combines wit	h an ele	ment 'B' of At.N	lo.17.	The compound formed is
		covalent AB		ionic AB ₂		$\operatorname{covalent} \operatorname{AB}_2$	(4)	
78.	The	number of neu	trons p	resent in the at	om of se	Ba ¹³⁷ is		
		56	(2)	137		193	(4)	81
79.	Нус	lrogen bonding	in wate	er molecule is r	esponsi	ble for		. 4
	(1)	decrease in its	freezi	ng point	(2)	increase in its	degree	e of ionization
	(3)	increase in its	boiling	g point	(4)			
80.	In th	ne HCl molecule	e, the b	onding betwee	n hydro	gen and chlorine	is	
		purely covaler				polar covalent		complex coordinate
81.	Pota	assium metal an	d potas	sium ions		14		
	(1)	both react with	water		(2)	have the same	numbe	er of protons
	(3)	both react with	chlori	ine gas	(4)	have the same	electro	onic configuration
82.	stan	dard flask. 10 ml	of this	solution were p	ipetted o		lask ar	made upto 100 ml in a nd made up with distilled solution now is
		0.1 M	(2)	1.0 M		0.5 M	(4)	
83.	Con	centration of a	.0 M s	olution of phos	sphoric	acid in water is		
		0.33 N		1.0 N		2.0 N	(4)	3.0 N
84.	Whi	ch of the follow	ing is a	Lewis acid?				
	(1)	Ammonia	0	00000000000000000000000000000000000000	(2)	Berylium chlor	ide	
	(3)	Boron trifluori	ide		(4)	Magnesium oxi		
	\- <i>\</i>				14-A	- Biresiani on		

								Booklet Coo	le : A
85	Whi	ch of the follow	ving co	nstitutes the com	pone	nts of a buffer :	solution	?	
001,	(1)			nd potassium hy					
	(2)	Sodium aceta							
	(3)	Magnesium s	ulphate	and sulphuric aci	id				
	(4)	Calcium chlo	ride and	l calcium acetate					
86.	Whi	ch of the follow	wing is	an electrolyte?					
	(1)	Acetic acid	(2)	Glucose	(3)	Urea	(4)	Pyridine	
87.		culate the Standard Cu/Cu ⁺² = $(-)$ 0.		of the cell, Co					0.44V and
	(1)	(-) 1.0 V	(2)	1.0 V	(3)	(-) 0.78 V	(4)	0.78 V	
88.	A so	lution of nicke	l chlori	de was electroly	sed us	sing Platinum e	electrod	es. After elec	trolysis,
	(1)	nickel will be	deposi	ted on the anode	(2)	Cl2 gas will b	e libera	ted at the cath	ode
	(3)	H ₂ gas will be	liberat	ed at the anode	(4)	nickel will be	deposi	ted on the cat	hode
89.	Whi	ch of the follow	wing me	etals will undergo	ooxid	ation fastest?			1
		Cu	(2)		(3)	material and the second	- (4)	Iron	
90.	Whi	ich of the follow	wing ca	nnot be used for	the ste	erilization of de	rinking	water?	
	(1)	Ozone			(2)				
	(3)	Potassium Cl	nloride		(4)	Chlorine wat	er		
91.	A w	ater sample sho	owed it	to contain 1.20 m	ng/litr	e of magnesiun	n sulpha	ite. Then, its l	nardness in
	(1)	1.0 ppm	(2)		(3)	0.60 ppm	(4)	2.40 ppm	

Set Code:

15-A

(2) sodium carbonate decahydrate

(3) metal cladding (4) electroplating

(4) sodium hydroxide (40%)

92. Soda used in the L-S process for softening of water is, Chemically.

93. The process of cementation with zinc powder is known as

(2) zincing

(1) sodium bicarbonate

(3) sodium carbonate

(1) sherardizing

Set Code :	T2
Booklet Code :	A

94.	Car	rosion of a met	tal is fas	test in					
	(1)	rain-water	(2)	acidulated wa	ter (3)	distilled water	(4)	de-ionised	i water
95.	Wh	ich of the follo	wing is	a thermoset pol	lymer?				
	(1)	Polystyrene			(2)	PVC			
	(3)	Polythene			(4)	Urea-formaldel	hyde i	resin	
96.	Che	mically, neopro	ene is						
	(1)	polyvinyl ben	zene		(2)	polyacetylene			
	(3)	polychloropro	ene		(4)	poly-1,3-butadi	ene		
97.	Vulc	canization invol	lves heat	ing of raw rubb	er with	1			
	(1)	selenium elen			(2)	elemental sulph	ur		
	(3)	a mixture of S	se and el	emental sulphu	ır (4)	a mixture of sel	enium	and sulphu	r dioxide
98.	Petro	ol largely conta	ains.						
	(1)	a mixture of u	nsaturat	ed hydrocarbo	ns C,-	C.			
	(2)			toluene and xy					
	(3)	a mixture of sa	aturated	hydrocarbons	C, - C	14			
	(4)			hydrocarbons					
99.	Whi	ch of the follow	ving gas	es is largely res	sponsil	ole for acid-rain?			
		SO, & NO,			-	CO ₂ & water var	our		
	(3)	CO ₂ & N ₂	70			N ₂ &CO ₂			
100.	BOD	stands for							
	(1)	Biogenetic Ox	ygen De	mand	(2)	Biometric Oxyg	en De	mand	
	(3)	Biological Ox			(4)	Biospecific Oxy			

Set Code :	T2
Booklet Code :	A

CIVIL ENGINEERING

101	Stre	ss strain curve is always a straight lin	ne for	
101.	(1)	Elastic materials	(2)	materials obeying Hook's law
		Elasto-plastic materials	(4)	
102.	The	maximum value of Poisson's for an	elastic n	naterial is
	(1)	0.25	(2)	0.5
	(3)	0.75	(4)	1.0
103.		stress at which extension of a materia	al takes p	place more quickly as compared to the increase
	(1)	Elastic point	(2)	Plastic point
	(3)	Breaking point	(4)	Yielding point
104.	For	ductile materials, the most appropria	ate failu	re theory is
	(1)	maximum shear stress theory		
	(2)	maximum principal stress theory		
	(3)	maximum principal strain theory		
	(4)	shear strain energy theory		
105.	The	materials which have the same elast	ic prope	rties is in all directions are
	(1)	Brittle material	(2)	Homogeneous material
	(3)	Isotropic material	(4)	Hard material
106.	weig	elastic bar of length 'l', cross section ght W is having vertically, it is subject agation of the bar is given by	onal area	A, Young's modulus of elasticity E and self oad applied axially at the bottom end. The total
	(1)	WI/AE + PI/AE	. (2)	WI/2AE+PI/AE
	(3)	WI/2AE + PI/2AE	(4)	WI/AE+PL/2AE
			17-A	(CVL)

Set Code :	T2
Booklet Code :	A

	rice.									
107.		bending momen	_					120 12	6	
	(1)	subjected to tr	iangul	ar load varying	from ze	ero at free end	to maxii	num at fixed e	nd	
	(2)	with free end	subject	ted to a momen	t					
	(3)	subjected to un	niform	ly distributed l	oad					
	(4)	subjected to co	oncent	rated load at th	e free e	nd				
108.	For	a simply suppor	ted bea	am with central	load, th	ne Bending M	oment w	ill be		
	(1)	Least at the ce			(2)					
1.0	(3)				(4)	maximum a	t the cent	re		
109.	The	B.M on a sectio	n is ma	aximum when s	shearing	force				
		is maximum	(2)			is equal	(4)	changes sign		
110	The c	deflection due		la Mattha fra	a and at	Ca annitilassan	of lanoth	Lie		
110.		deflection due t				-		M ² L/2EI		
	(1)	ML/EI	(2)	2ML/EI	(3)	ML ² /2EI	(4)	M-L/2EI		
111.	The	shear force on a	simpl	y supported be	am is pı	roportional to				
	(1)	displacement of	of the r	neutral axis	(2)	sum of the f	forces		4.7	
	(3)	algebraic sum	of tran	sverse forces	(4)	algebraic sum of axial forces				
112.	The alwa	shape of the ber	nding n	noment diagrar	n over t	he length of a	beam, ha	wing no extern	al load is	
	(1)	parabolic	(2)	cubical	(3)	linear	(4)	circular		
113.	The	ratio of maximu	um to a	verage shear s	tress in	a solid circula	ar section	is		
	(1)	1.0	(2)	1.33	(3)	1.5	(4)	1.7		
114.	The	Poison's ratio f	or corl	k is						
		zero			(3)	0.2	(4)	0.3		
			, ,		18-A				(CVL)	

Set Code :	T2
Booklet Code:	A

115.	The	sum of the mor	ment of	inertias abou	at any two	orthogonal axe	s is			
	(1)	always consta	nt		(2)	always zero				
	(3)	always one			(4)	always linear		£ 2		
116.		in energy in tor lulus of elastici					nsideri	ng 'q' as shear stress, E		
	(1)	$q^2/2G$	(2)	$q^2/2E$	(3)	q/4G	(4)	q/4E		
117.	The	maximum shea	ar stress	in a thin tub	e is					
	(1)	equal to avera	ge shea	r stress	(2)	twice the avera	age she	ear stress		
	(3)	half the avera	ge shea	rstress	(4)	one third of av	erage	shear stress		
118.	Mac	aulay's method	is used	for calculat	ion of whi	ch quantity				
	(1)	bending mom	ent		(2)	shear force				
	(3)	slope and def	lection		(4)	stresses				
119.	Alo	ng the neutral a	xis of si	mply suppor	ted beam		10			
	(1)	fibers do not			(2)	fibers undergo	minin	num strain		
	(3)	fibers underg	_		(4)	fibers undergo minimum stress				
120.	The	area under stre	ss strair	curve repre	sents					
		work done		ductility		strain energy	(4)	residual stress		
121.	The	maximum defl						nent (M) at its free end is		
	(1)	Ml ² /3EI	(2)	MI ² /4EI	(3)	MI ² /6EI	(4)	MI ² /2EI		
122.	The	shape of kern a	area of a	rectangular	section is					
	(1)	rectangle	(2)	square	(3)	rhombus	(4)	parallelogram		
123.	Pola	ar modulus of a	section	is a measur	e of streng	gth of section in	í			
	(1)		(2)			torsion	(4)	axial compression		
					19-A			(CVL)		

Set Code :	T2
Booklet Code :	A

124	. Thi	ick cylinde	ers are	analys	sed on the b	asis of				
	(1)	maximu	ım she	ar stre	ss theory	(2)	Lame's th	ncory		
	(3)	Poisson	's the	ory		(4)	Rankine's	s theory		
125	. Wh	en one en	d of a f	ixed b	eam deflec	ts by 'δ' the	n the bend	ing momen	t at deflec	eted end is
	(1)	$\frac{2EI\delta}{L^2}$		(2)	$\frac{3EI\delta}{L}$	(3)	$\frac{3EI\delta}{L^2}$	(4)	$\frac{6EI\delta}{L^2}$	
126.	The	flexural r	igidity	ofah	inged end i	S				
	(1)	infinity		(2)	zero	(3)	two	(4)	one	
127.	Buc	kling load	can b	e great	er than crus	shing load it	f			
	(1)	column	is a sh	ort col	umn	(2)	column ha	as both end	fixed	
	(3)	column	is a lor	ng one		(4)	column be	oth ends hin	ged	
128.	For	a column	of leng	th 'L'	having one	end fixed a	nd other en	d free, the e	quivalent	length is
	(1)	2L		(2)	L	(3)	L/2	(4)	$L/\sqrt{2}$	
29.		ratio of cr			s of a colun	nn having b	oth the end	s fixed and	the colum	nn whose both
	(1)	1.0		(2)	2.0	(3)	3.0	(4)	4.0	
30.		maximum ity 's' is	height	ofan	nasonry dan	n of a triangu	lar section	whose base	width is 'l	b' and specific
	(1)	$b\sqrt{s}$		(2)	b.s	(3)	$\sqrt{b}.\sqrt{s}$	(4)	$s\sqrt{b}$	
31.	The	failure we	dge de	velops	when a ret	aining wall				
	(1)	moves av	way fro	m the	backfill					
	(2)	moves to	wards	backfi	ili					
	(3)	sink dow	nwards	;						
	(4)	stresses e	qually	by ve	rtical and h	orizontal fo	orces			
			83 6			20-A				(CVL)
										(0.11)

								Booklet Cod	le: A
132.	The	lateral earth pr	essure o	n a retaining wa	11				
	(1)			e soil retained					
	(2)			epth of the soil					
	(3)			uare of the dept	th of th	ne soil			
	(4)			ternal friction o					
133.	Mod	lulus of rapture	e of con	crete is a measu	re of				
	(1)	flexural tensi			(2)	direct tensile s	trengt	h	
	(3)	compressive	strength		(4)	both flexural &	tensi	le strength	
134.	The	fineness modu	lus of fi	ine aggregate is	in the	range of			
	(1)	2.0 to 3.5	(2)	3.5 to 5.0	(3)	5.0 to 7.0	(4)	7.0 to 10.0	
135.	For	making a good	concret	e, aggregate sho	uld be	in		10	
	(1)	saturated con			(2)	surface dry cor	ndition	1	
	(3)	bone dry con-			(4)	semi saturated	condi	tion	
136.	For	reinforced cen	nent con	crete the slump	shoul	d be			
		0 to 5 cm		2.5 to 7.5 cm			(4)	5 to 12.5 cm	n
137.	The	ratio of tensile	e to com	pressive strengt	th of c	oncrete is			
		0.025		0.04	(3)		(4)	0.4	.+
138.	Des	ign mix concre	ete is pro	eferred over non	ninal r	nix concrete bec	ause		

139. Which of the following does not cause unsoundness in cement

(1) free lime

(2) magnesia

(3) calcium sulphate

(1) strength of former is more

(3) it is easy to prepare former at site

(4) silica

21-A (CVL)

(2) cement content of later is more

(4) strength of later is less

Set Code : T2

Set Code :	T2
Booklet Code :	A

										0.00	
140	. The	partial safety	factor fo	r steel as p	er IS 45	5-20	00 is taken as	5			
	(1)	1.15	(2)	1.25	(3	3)	1.50	(4)	1.75		
141	. In v	vorking stress of	lesign, t	he factor of	f safety is	s app	olied on				
	(1)	ultimate stres	SS		(2	2)	yield stress				
	(3)	stress at elas	tic limit		(4	4)	breaking stre	ss			
142	Ina	RCC column i	f ties are	not provid	ded, the o	olur	nn is likely to)			
	(1)	fail by bucklin	ng		(2	2) 1	fail by crushin	ng			
	(3)	behave like a	beam		(4	1)	fail by torsion	1		19	
143.	Тос	lesign a columr	ı, one sh	ould norm	ally start	by a	ssuming the	area of	steel as		
	(1)	1%	(2)	0.15%	(3	3) (0.5%	(4)	0.75%		
144.	Whi	ich of the follow	ving is g	generally n	ot design	ed f	or shear				
	(1)	a slab	01 1		(2	2) 2	a cantilever be	eam	•		
	(3)	a footing			(4) 8	beam				
145.	The	maximum shea	r stress	in a beam o	of rectang	gulai	r section is gi	ven by	12		
	(1)	1.25 times the			(2		1.5 times the				
	(3)	1.75 times the	averag	e	(4) 2	2.0 times the	average			
146.	The	radius of a bar	bend to	form a hoo	k, should	inot	be less than				
	(1)				(2		hrice the diar	neter			
	(3)	four times the	diamet	er	(4) f	ive times the	diamet	er		
147.	Incre	ease in fineness	moduli	is of aggre	gate indi	cates	3				
	(1)	fine grading			(2		oarser gradin				
	(3)	gap grading			(4) n	nixed grading				
					22 A						CVI

							3	Set Co Booklet Co	
148	In sla	ab, the minimun	n reinf	orcement prov	rided is (for Fe 250 Gra	ade)		
140.	(1)				(2)	0.12% of its	gross sec	ctional area	
	(3)				(4)	0.18% of its	gross sec	ctional area	
1.40	The	diameter of long	oitudin	al hars of a co	lumn sho	ould never be l	ess than		
149.		6 mm	(2)		(3)	10 mm	(4)	12 mm	
150.	exce		(2)		the ratio		ve length		dimension
	(1)	10	(2)	12	(5)				
151	The	shear reinforce	ment i	n RCC is prov	ided to re	esist			
	(1)	vertical shear			(2)		near		
	(3)	diagonal comp	oressio	n	(4)	diagonal ten	sion		
152	The	maximum ratio	of spa	n to depth of a	slab sim	ple supported	and span	ning in two	direction, is
		25		30	(3)	35	(4)	40	
153	Ifc	oncrete grade is	M-20	then what wo	ald be the	modular rati	0		
155		7.08		9.08		12	(4)	13.33	
154	For	stairs spanning	horizo	ntally the min	imum wa	ist provided i	s		
134		4 cm			(3)	10 cm	(4)	12 cm	
155	Tet	and R are tread	and ri	se respectivel	y of a sta	ir, then			1
	(1)	2R + T = 60	(2)	R + 2T = 60	(3)	2R + T = 30	(4)	R + 2T =	30
156	Inv	ar tape is made	of an a	illov of	and:	steel.			
1.50		Copper		Zinc	(3)	Nickel	(4)	Bronze	
	(1)	Соррег	(2)		23-A				(CVL)

								Set Code : T2 Booklet Code : A	
157	Wall	king over the area	and o	bserving its ma	in featu	res and boundar	ries, is k	nown assurvey.	
		Topographical						Reconnaissance	
158.		sum of the exter e number of its s		gles of a closed	l traver	se is equal to _		Right angles, where n	
	(1)	(2n - 4)	(2)	(2n + 4)	(3)	(4n-2)	(4)	(4n + 2)	
159.	Ifth	e whole circle be	earing	of a line is 270	o, then	its bearing in q	uadran	tal system is	
	(1)	90°W	(2)	90°E	(3)	180°W	(4)	180°E	
160.	A line which passes through the optical centre of the objective and also through the intersect of the cross hair, is called								
	(1)	1) Line of collimation			(2)	Axis of telesc	ope		
	(3)	Horizontal axis	;		(4)	Trunion axis			
161.		L. of a B.M. is 20 on, is	00.00	m, back sight is	1.525 ı	m and foresight	is 3.28	5 m, R.L. of the forward	
		198.460m	(2)	201.760m	(3)	198.240m	(4)	201.525m	
162.	In tr	apezoidal formu	la of a	areas, the line jo	oining t	he ends of the	ordinate	es is assumed	
		semi circular				parabolic		circular	
163.	1 A	re is equal to							
	(1)	43560 sq.ft	(2)	34560 sq.ft	(3)	54360 sq.ft	(4)	64350 sq.ft	
164.	Ifat	tacheometer is fi	tted w	ith anallatic ler	ns				
	(1)	Additive consta	ant is	100, multiplyin	g const	ant is 0			
	(2)	Additive consta	ant is	0, multiplying o	onstant	is 100			
	(3)	Both additive c							
	(4)	Both additive c						4	
					24.4			(CVL)	

								Set Code : T2 Booklet Code : A
165.	One	S.I. unit of vis	cosity is	s equal to				
5.550		10 poises		981 poises	(3)	9.81 Ns/m ²	(4)	10 kg.sec/m ²
166.	8 m	of oil (sp.Gr. =	0.8) he	ad is equal to the	he follo	wing water hea	ad	
	(1)	10 m	(2)	8 m	(3)	6.4 m	(4)	1 m
167.				of altitude h ha s centre of pres		ide in the free	surface	of a liquid. Its vertex is
	(1)	0.8 h	(2)	0.75 h	(3)	0.5 h	(4)	h/3
168.	The	equation of co	ntinuity					
	(1)	is valid for in	compre	ssible fluids				
	(2)	expresses the	relation	n between mas	s and ar	rea of cross-sec	tion	
	(3)	relates the de	nsity va	riations along a	a stream	n line		
	(4)	relates the m	ass rate	of flow along a	stream	tube		9
169.	Flov	w of a fluid fro	m low p	ressure to high	pressu	re is		
	(1)	possible in up	ward fl	ow through a u	niform	vertical line		
	(2)	possible in fle	ow throu	igh a convergir	ng pipe	with horizontal	axis	92
	(3)	possible in fle	ow throu	igh a diverging	pipe w	ith a horizontal	axis	
	(4)	impossible if	the pas	sage has a cons	stant cre	oss-section		
170.	Diff	erential manor	meters a	re used for mea	asuring			
	(1)	velocity of fl	uid at a	point				
	(2)	pressure of fl	uid at a	point				
	(3)	discharge of	fluid					
	(4)	difference of	pressur	e between two	points			

(CVL)

					Booklet Co	ode : A				
171.	The	pressure at vena-contracta of an extern	al mo	uthpiece is	5					
	(1)	always less than saturation vapor pres	sure o	fliquid						
	(2)	inversely proportional to square of co	oeffici	ent of contrac	ction					
	(3)	always greater than atmospheric press								
	(4)	a function of the head over the mouth	piece							
172.	ΑV	notch is considered to be a better notel	h beca	use						
	(1)	its C _d is practically uniform over a wi	de ran	ge of heads						
	(2)									
	(3)	It keeps the head within a reasonable limit even for large discharges								
	(4)	Its C _d is smaller								
173.		error of 1 mm is committed in the measurement are the percent error in discharge is	ureme	nt of head ove	r a rectangular notch	. If the head				
	(1)	0.5 (2) 0.6	(3)	1.0	(4) 1.5					
174.	The	Hagen-Poiseuille equation gives								
	(1)	head loss in laminar flow								
	(2)	boundary shear stress in laminar flow								
	(3)	shear stress distribution in any pipe f	low							
	(4)	velocity distribution in any pipe flow								
175.	. The	loss of head due to friction in turbulen	t flow	through a circ	cular pipe					
		varies as cube of average velocity				age velocity				
	(3)	varies as square of average velocity		is directly pr	roportional to average	ge velocity				
176.	. Lan	ninar flow through a pipe, the velocity of	listrib	ution curve is						
	(1)	logarithmic		parabolic						
	(3)	elliptical	(4)	hyperbolic						
		12.0000-2000-0000	26-A			(CVL)				

Set Code : T2

Set Code :	T2
Booklet Code :	A

177	For the most economical	tranezoidal	section of	f an open	channel
177	For the most economical	trabezoidai	Section 0	i an open	CHAMILTON

- (1) depth of flow = twice base width
- (2) depth of flow = hydraulic radius
- (3) sloping side = half the top width
- (4) sloping side = base width

178. Froude's number is defined as the ratio of

- (1) Inertia force to viscous force
- (2) Inertia force to elastic force
- (3) Inertia force to pressure force
- (4) Inertia force to gravity force

179. The critical velocity for a flow of q m3 width of a wide rectangular channel is given by

$$(1) \quad \left(\frac{q^2}{g}\right)^{\frac{1}{3}}$$

(2)
$$(q^2g)^{\frac{1}{3}}$$

$$(3) \quad \left(\frac{g}{q^2}\right)^{\frac{1}{3}}$$

(4)
$$(qg)^{\frac{1}{2}}$$

180. The function of scroll case of a reaction turbine is to

- (1) Guide the water to the runner at appropriate angle
- (2) Guide the water smoothly to the tailrace
- (3) Distribute the water evenly around the wheel
- (4) Reduce the eddy and shock losses

181. The runner blades of a Kaplan turbine are

- (1) More curved than propeller blades
- (2) More curved than pelton blades
- (3) More curved than Francis blades
- (4) Less curved than Francis blades

182. When the speed of a centrifugal pump is constant

- (1) Shaft power decreases with increase of Q
- (2) H_m decreases with increase of Q
- (3) Q increases with increase of H_m
- (4) Q is independent of H_m

(CVL)

27-A

Set Code :	
Booklet Code :	A

183.	The	optical square is	based	on the princip	ole of op	tical			
	(1)	reflection			(2)	refraction			
	(3)	double reflecti	on		(4)	double refract	ion		
184.	Λre	servoir provided	at the	intake head w	orks fro	m which water	enters	the penstocks is	
	(1)	power canal	(2)	tail rack	(3)	fore bay	(4)	trash rack	
185.	Con	sumptive use is:	0						
	(1)	water used up i	n plan	metabolism					
	(2)	sum of evapo-t	ranspi	ration and amo	unt use	d up in plant me	tabolis	m	
	(3)	sum of evapo-t	ranspi	ration and infi	ltration	losses			
	(4)	combined use	of surf	ace and ground	d water	resources			
186.	The	head under whic	h a ce	ntrifugal pump	works i	s called			
	(1)	piezometric he	ad		(2)	pressure head			
	(3)	suction head			(4)	manometric ho	ead		
187.		volume of wate		can be extract	ed by fo	orce of gravity	from a	unit volume of a	quifer
	(1)	specific capaci	ity	10	(2)	specific yield			
	(3)	specific retent	ion		(4)	specific storag	ge		
188.	One	cumec day is eq	ual to						
	(1)	8.64 hectare m	etres		(2)	86.4 hectare n	netres		
	(3)	864 hectare m	etres		(4)	0.864 hectare	metre	S.	
189.	Lace	ey considered ch	annel	section					
		Rectangular	(2)	Trapezoidal	(3)	Semi elliptica	1 (4)	Elliptical	
					28.4				(CVL)

				Booklet Code : A
190.	Lanc	is said to be water logged when		25.25
	(1)	Gravity drainage is ceased	(2)	
	(3)	Salinity of soil increases	(4)	Capillary fringe reaches root zone of plants
191.	Hyd	raulic jump occurs when the flow c	hanges fro	om
	(1)	super critical to sub critical	(2)	sub critical to super critical
	(3)	critical to turbulent	(4)	laminar to turbulent
192.	Stre	ams that contribute to the ground w	ater are ca	
	(1)	Effluent streams	(2)	Ground water stream
	(3)	Influent streams	(4)	Perennial stream
193.	Rati	onal method correlates		
	(1)	Run off coefficient with intensity	of rainfal	1
	(2)	Run off co efficient with drainage	e area	
	(3)	Drainage area with intensity of ra	infall	
	(4)	Intensity of rainfall with run off		
194	. The	example of multiple Arch type But	tress dam	
	(1)	Mir-Alam dam	(2)	
	(3)	Idikki dam	(4)	Koyna dam
195	. Sur	charge storage of reservoir is the ve	olume of v	water stored between
	(1)			
	(2)			
	(3)			
	(4)	Normal pool level and revert bed	level	

Set Code : T2

29-A (CVL)

Set Code :	
Booklet Code :	A

196.	,	Seepage endangers the stability of an earth dam built on pervious foundation because of piping which depends on										
	(1)	height of dam	(2)	quantity of seepage flow	N							
	(3)	value of exit gradient	(4)	total reservoir storage	capacity							
197.	Inve	erted filter for providing foundation d	rainage l	nas								
	(1)	multi layers of soil particles of san	ne perme	ability								
	(3)	 multi layers in which permeability increases from bottom to top 										
	(4)	only one layer of soil		40								
198.	Gra	vity dams transfer load to foundation	by									
	(1)	Arch action	(2)	Cantilever action								
	(3)	Both arch and cantilever action	(4)	Cohesion								
199.	A cl	nute spill way is generally provided w	ith	**								
	(1)	A weir	(2)	A barrage								
	(3)	Concrete gravity dam	(4)	An earth dam	đ							
200.	The	function of surge tank is to										
	(1)	avoid flow in reverse direction		66								
	(2)	smoothen the flow										
	(3)	act as a reservoir for emergency co	ndition									
	(4)	relieve the pipe line of excessive p	ressure t	ransients								
			30-A			(CVL)						