Question Paper Preview

Question Paper Name:Civil EngineeringSubject Name:Civil Engineering

Mathematics

Number of Questions: 50
Display Number Panel: Yes
Group All Questions: No

Question Number: 1 Question Id: 67809417224 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If
$$A = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 4 & 7 \end{pmatrix}$$
 and $B = \begin{pmatrix} 5 & 2 & -3 \\ 1 & 0 & -2 \end{pmatrix}$ then $2A+3B =$

Options:

$$\begin{pmatrix} -19 & -4 & 9 \\ 9 & 8 & -8 \end{pmatrix}$$

$$\binom{18}{9} \binom{4}{8} \binom{-9}{8}$$

$$\begin{pmatrix} 17 & 5 & -9 \\ 8 & 8 & 9 \end{pmatrix}$$

Question Number : 2 Question Id : 67809417225 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

If
$$A = \begin{pmatrix} 2 & -3 & 0 \\ 1 & 4 & -1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 6 & 1 \\ 3 & 0 \\ 5 & 2 \end{pmatrix}$ then $(AB)^T = \begin{pmatrix} 6 & 1 \\ 3 & 0 \\ 5 & 2 \end{pmatrix}$

Options:

 A^TB^T

$$_{2}$$
 $B^{T}A^{T}$

$$_{3}$$
 (BA)^T

Question Number: 3 Question Id: 67809417226 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If two rows or two columns of a determinant are identical then the value of the determinant is

Options:

- 1 2
- 2 -1
- 3. 0
- 4. -2

Question Number: 4 Question Id: 67809417227 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Options:

- , -1
- 2 0
- 2 1
- 4 2

Question Number: 5 Question Id: 67809417228 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The adjoint of the square matrix
$$A = \begin{pmatrix} 2 & 5 & 1 \\ 3 & 1 & 2 \\ 4 & 3 & 1 \end{pmatrix}$$
 is

Options:

$$\begin{pmatrix} -5 & -2 & 9 \\ 5 & -2 & -1 \\ 5 & 14 & -13 \end{pmatrix}$$

$$\begin{pmatrix} 5 & 2 & 9 \\ 5 & -2 & -1 \\ 5 & 14 & -13 \end{pmatrix}$$

$$\begin{pmatrix} -5 & -2 & 9 \\ -5 & -2 & -1 \\ -5 & 14 & -13 \end{pmatrix}$$

$$\begin{pmatrix} -5 & -2 & -9 \\ 5 & 2 & 1 \\ 5 & 14 & -13 \end{pmatrix}$$

Question Number: 6 Question Id: 67809417229 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

Resolve into partial fractions: $\frac{5}{(2x-1)(3x-1)}$ =

Options:

$$\frac{8}{2x-1} + \frac{5}{3x-1}$$

$$\frac{10}{2x-1} - \frac{15}{3x-1}$$

$$\frac{11}{3x-1} + \frac{7}{2x-1}$$

$$\frac{1}{2x-1} + \frac{2}{3x-1}$$

Question Number: 7 Question Id: 67809417230 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

Resolve into partial fractions: $\frac{3x-1}{(x-1)(x-2)(x-3)} =$

Options:

$$\frac{2}{x-1} + \frac{5}{x-2} - \frac{4}{x-3}$$

 $\frac{2}{x-1} + \frac{5}{x-2} - \frac{4}{x-3}$ www.manaresults.co.in

$$\frac{-1}{x-1} + \frac{5}{x-2} - \frac{4}{x-3}$$

$$\frac{1}{x-1} + \frac{5}{x-2} + \frac{4}{x-3}$$

$$\frac{1}{4} \frac{1}{x-1} - \frac{5}{x-2} + \frac{4}{x-3}$$

Question Number: 8 Question Id: 67809417231 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If $tanA = \frac{1}{2}$ and $tanB = \frac{1}{3}$ then tan(A - B) =

Options:

- 1. 7
- 2 7
- 3 5
- 4 3

Question Number: 9 Question Id: 67809417232 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $\cot 2A + \tan A =$

- 1. sin2A
- 2 cos2A
- 3. sec2A
- 4. cosec2A

The value of	1-cos2A+sin2A	
	1+cos2A+sin2A	

Options:

1. sinA

2 cosA

3. tanA

4 cotA

Question Number: 11 Question Id: 67809417234 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $\sin \frac{\pi}{5} \sin \frac{2\pi}{5} \sin \frac{3\pi}{5} \sin \frac{4\pi}{5} =$

Options:

- 1. 15
- 2 16
- -5 - 16
- 7 4 15

Question Number: 12 Question Id: 67809417235 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} =$

- 1 0
- 2.3
- 3. 1
- 4 -3

Question Number: 13 Question Id: 67809417236 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $\sum a(b^2 + c^2)\cos A$ is

Options:

- 1 2abc
- 2 4abc
- 3 3abc
- 4 5abc

Question Number: 14 Question Id: 67809417237 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $(a-b)^2 cos^2 \left(\frac{c}{2}\right) + (a+b)^2 sin^2 \left(\frac{c}{2}\right)$ is

Options:

- 1. C3
- 2 C
- 2 C5
- C^2

Question Number: 15 Question Id: 67809417238 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $2tan^{-1}\left(\frac{1}{3}\right) + tan^{-1}\left(\frac{1}{7}\right)$ is

- 1. $\pi/4$
- $_2$ $\pi/2$
- 3. $\pi/6$
- $4 \pi/3$

The general solution of $4\cos^2 x - 3 = 0$ is

Options:

$$2n\pi \pm \frac{\pi}{6}$$

$$_{2}$$
 $2n\pi \pm \frac{7\pi}{6}$

$$3n\pi \pm \frac{5\pi}{6}$$

$$2n\pi \pm \frac{11\pi}{6}$$

Question Number: 17 Question Id: 67809417240 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

If $tan^{-1}x + tan^{-1}y + tan^{-1}z = \frac{\pi}{2}$, then the value of xy + yz + zx is

Options:

- 1. -1
- 2. 3
- 3 5
- 4. 1

Question Number: 18 Question Id: 67809417241 Display Question Number: Yes Single Line Question Option: No Option Orientation : Vertical

The modulus of a complex number $\sqrt{3} + i$ is

Options:

- 1. -2
- 2. 3
- 3. 2
- 4 5

WWW.manaresults.co.in
Question Number: 19 Question Id: 67809417242 Display Question Number: Yes Single Line Question Option: No Option

Orientation: Vertical

If $x + \frac{1}{x} = 2\cos\theta$ then the value of $x^n + \frac{1}{x^n}$ is

Options:

- $\frac{1}{1} 2 \cos n\theta$
- $_2$ -2 cos $n\theta$
- $3\cos\theta$
- $\frac{2\sin n\theta}{\theta}$

Question Number: 20 Question Id: 67809417243 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The centre of the circle: $x^2 + y^2 - 2x + 6y - 6 = 0$ is

Options:

- $_{1}$ (1,3)
- $_{2.}(2,3)$
- $_{3.}(1,-3)$
- 4 (-1,3)

Question Number: 21 Question Id: 67809417244 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The radius of the circle: $5x^2 + 5y^2 - 6x + 8y - 75 = 0$ is

Options:

- 1. -4
- 2. 4
- 3. 2
- 4. 3

Question Number: 22 Question Id: 67809417245 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical WWW.manaresults.co.in

The equation of the parabola with vertex (2,-1) and focus (2,-3) is

Options:

$$\int_{1.}^{2} x^{2} - 4x + 8y + 12 = 0$$

$$x^2 - 4x - 8y - 12 = 0$$

$$x^2 + 4x - 8y - 12 = 0$$

$$x^2 + 5x - 8y - 11 = 0$$

Question Number: 23 Question Id: 67809417246 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The centre of the ellipse: $9x^2 + 25y^2 - 18x + 100y - 116 = 0$ is

Options:

$$(2,-1)$$

$$_{2}$$
 $(-1,-2)$

$$_{3}$$
 (1,-2)

Question Number: 24 Question Id: 67809417247 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The focus of the hyperbola: $\frac{x^2}{25} - \frac{y^2}{144} = 1$ is

Options:

$$(-13,0)$$

$$_{3}$$
 (13, -1)

Question Number: 25 Question Id: 67809417248 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The length of the major axis of the ellipse: $4x^2 + 3y^2 = 48$ is

Options :

1. 10

2.11

3. 8

4. 13

Question Number: 26 Question Id: 67809417249 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $\lim_{x\to 1} \frac{x^3-1}{x-1}$ is

Options:

1. 3

2 -3

3. 2

4. 1

Question Number: 27 Question Id: 67809417250 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If $y = \frac{a+bx}{b-ax}$ then the derivative of y with respect to x is

Options:

$$\int_{1}^{a^2+b^2} \frac{a^2+b^2}{(b-ax)^2}$$

$$\frac{a^2+b^2}{(b+ax)^2}$$

$$\frac{a^2-b^2}{(b-ax)^2}$$

$$\frac{a+b}{(b-ax)^2}$$

Question Number: 28 Question Id: 67809417251 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If
$$y = x^3 e^x$$
 then $\frac{dy}{dx}$ is

Options:

$$(x-3)x^2e^x$$

$$(x-2)x^3e^x$$

$$\int_{3} (x+3)x^2 e^x$$

$$(x-1)x^3e^x$$

Question Number : 29 Question Id : 67809417252 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

If $y = \sec x + \tan x$ then $\frac{dy}{dx}$ is

Options:

 $\int_{1}^{\infty} y \cos x$

 $_2$ y sec x

 $y = -y \sin x$

 $y \tan x$

Question Number: 30 Question Id: 67809417253 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If $y = \frac{2+3 \sinh x}{3+2 \sinh x}$ then the derivative of y with respect to x is

Options:

$$\frac{5\cosh x}{(3+2\sinh x)^2}$$

$$\frac{5 \sinh x}{(3+2 \sinh x)^2}$$

$$\frac{5\sin x}{(3-2\cosh x)^2}$$

$$\frac{\sinh^2 x}{(2-3\sinh x)^2}$$

Question Number: 31 Question Id: 67809417254 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If
$$y = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$
 then $\frac{dy}{dx}$ is

Options:

$$\sec^2\left(\frac{x}{2}\right)$$

$$\cos^2\left(\frac{x}{2}\right)$$

$$\frac{1}{2}\cos^2\left(\frac{x}{2}\right)$$

$$\frac{1}{2}\sec^2\left(\frac{x}{2}\right)$$

Question Number: 32 Question Id: 67809417255 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The angle between the curves $y = x^2 + 3x - 7$ and $y^2 = 2x + 5$ at (2,3) is

Options:

$$\tan \theta = 2$$

$$_2$$
 $\sec \theta = 2$

$$\cos \theta = 1$$

$$\sin \theta = 3$$

Question Number: 33 Question Id: 67809417256 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The range of x for which the function $x^3 - 3x^2 - 45x + 2$ is increasing with x is

Options:

$$(3,-5)$$

$$_{2}$$
 $(-3,-5)$

$$_{4}$$
 (-3,5)

Question Number: 34 Question Id: 67809417257 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The maximum value of the function $2x^3 - 12x^2 + 18x + 5$ is

Options:

- 1 13
- 2 12
- 3. 10
- 4 15

Question Number : 35 Question Id : 67809417258 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

If u is a homogeneous function of x and y with degree n then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} =$

Options:

- 1. -nu
- $_2$ n^2u
- 3 nu
- $u^{2} + u^{2}$

Question Number: 36 Question Id: 67809417259 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$ is

$$2\sin\sqrt{x}+c$$

$$3\sin\sqrt{x}+c$$

$$2\sin x + c$$

$$\sin \sqrt{x} + c$$

Question Number: 37 Question Id: 67809417260 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $\int \frac{dx}{\sqrt{a^2-x^2}}$ is

Options:

$$\cos^{-1}\left(\frac{x}{a}\right) + c$$

$$\sin^{-1}\left(\frac{x}{a}\right) + c$$

$$\sinh^{-1}\left(\frac{x}{a}\right) + c$$

$$\sin^{-1}\left(\frac{a}{x}\right) + c$$

Question Number: 38 Question Id: 67809417261 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $\int \frac{dx}{4x^2+4x+17}$ is

Options:

$$\frac{1}{8} \tan^{-1} \left(\frac{2x+1}{4} \right) + c$$

$$\int_{2}^{\frac{1}{4}} \cot^{-1}\left(\frac{2x+1}{4}\right) + c$$

$$\frac{1}{8}\sin^{-1}\left(\frac{2x+1}{4}\right) + c$$

$$\int_{4}^{1} \tan^{-1}\left(\frac{2x+1}{4}\right) + c$$

Question Number: 39 Question Id: 67809417262 Display Question Number: Yes Single Line Question Option: No Option

The value of $\int \log x \, dx$ is

Options:

$$x \log x + x + c$$

$$2 x^2 \log x - x + c$$

$$x \log x - x + c$$

$$x \log x - \frac{x^2}{2} + c$$

Question Number : 40 Question Id : 67809417263 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

The value of $\int_{1}^{4} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx$ is

Options:

$$-\frac{20}{3}$$

Question Number: 41 Question Id: 67809417264 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $\int_0^{\pi/2} \sin^2 x \, dx$ is

$$\frac{\pi}{2}$$

$$-\frac{\pi}{4}$$

$$\frac{\pi}{4}$$

Question Number: 42 Question Id: 67809417265 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The area enclosed between the curve $y^2 = 4ax$ and the line x = 2y is

Options:

$$\frac{64}{5}$$
 sq. units

$$\frac{64}{3}$$
 sq. units

$$\frac{65}{4}$$
 sq. units

$$\frac{63}{4}$$
 sq. units

Question Number: 43 Question Id: 67809417266 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The value of $\lim_{n\to\infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n} \right]$ is

Options:

$$_4 \log n$$

Question Number: 44 Question Id: 67809417267 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Form the differential equation by eliminating the arbitrary constant a from $ay^2 = x^3$ WWW. Manaresults.co.in

$$\frac{dy}{dx} = \frac{3y}{2x}$$

$$\frac{dy}{dx} = \frac{2x}{3y}$$

$$\frac{dy}{dx} = \frac{x}{y}$$

$$\frac{dy}{dx} = \frac{2y}{x}$$

Question Number: 45 Question Id: 67809417268 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The solution of $\sqrt{1-y^2}dx + \sqrt{1-x^2}dy = 0$ is

Options:

$$\int_{1}^{1} \cos^{-1} x + \cos^{-1} y = c$$

$$\int_{\gamma} \sinh^{-1} x + \cosh^{-1} y = c$$

$$\cos^{-1} x + \sec^{-1} x = c$$

$$\sin^{-1} x + \sin^{-1} y = c$$

Question Number: 46 Question Id: 67809417269 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The solution of $\frac{dy}{dx} = (4x + y + 1)^2$ is

Options:

$$\int_{1}^{1} \tan^{-1} \left(\frac{4x + y + 1}{2} \right) = x + c$$

$$\int_{2}^{1} \cot^{-1} \left(\frac{4x + y + 1}{2} \right) = x + c$$

$$-\frac{1}{2}\tan^{-1}\left(\frac{4x+y+1}{2}\right) = x + c$$

$$\frac{1}{2}\tan^{-1}\left(\frac{4x-y-1}{2}\right) = x + c$$

Question Number: 47 Question Id: 67809417270 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The solution of exact differential equation $2xy dx + x^2 dy = 0$ is

Options:

$$x^2y^2 = c$$

$$x^2y=c$$

$$x^3y=c$$

$$_{4} x^{2}y^{3} = c$$

Question Number: 48 Question Id: 67809417271 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The solution of $\frac{dy}{dx} + y = e^{-x}$ is

Options:

$$(x+c)e^{-x}$$

$$(x-c)e^x$$

$$(x+c)e^x$$

$$(x+c)e^{-2x}$$

Question Number: 49 Question Id: 67809417272 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The particular integral of $(D^2 + 5D + 6)y = e^x$ is

$$\frac{-e^{-x}}{12}$$

$$\frac{e^{2x}}{12}$$

$$\frac{e^x}{12}$$

$$\frac{e^{x}}{6}$$

Question Number: 50 Question Id: 67809417273 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The complementary function of $(D^2 + 3D + 2)y = 8sin5x$ is

Options:

$$c_1e^{-x} + c_2e^{-2x}$$

$$c_1e^x + c_2e^{2x}$$

$$c_1 e^{-x} + c_2 e^{2x}$$

$$c_1e^{2x}+c_2e^{3x}$$

Physics

Number of Questions:25Display Number Panel:YesGroup All Questions:No

Question Number: 51 Question Id: 67809417274 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Which of the following is not the unit of energy?

Options:

watt second

2 Pascal metre

1. 5:4
2. 5:2
3. 5:1
4. 10:1
Question Number: 58 Question Id: 67809417281 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The ratio of distances travelled by a body, starting from rest and travelling with uniform
acceleration, in successive intervals of time of equal duration will be
Options:
1. 1 :2:3
2. 1:4:9
_{3.} 1:3:5
4 1:9:16
Question Number: 59 Question Id: 67809417282 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
A force of 12 N acts on a body of mass 4 kg placed on a rough surface. The coefficient of
friction between body and surface is 0.2 and take g= 10 ms ⁻² . The acceleration of the body in
ms ⁻² is
Options:
1. 1
2 0.5
3. 0.25
4. Zero
Question Number: 60 Question Id: 67809417283 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Question Number : 63 Question Id : 67809417286 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

A crane can lift up 10,000 kg of coal in 1 hour from a mine of depth 180m. If the efficiency of

the crane is 80%, its input power must be $(g=10 \text{ ms}^{-2})$

Options:

- _{1.} 62.5 kW
- ₂ 6.25 kW
- 3. 50 kW
- 4.5 kW

Question Number: 64 Question Id: 67809417287 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The graph of acceleration as a function of displacement in the case of a body executing

simple harmonic motion is

Options:

- Parabola
- ₂ Hyperbola
- Straight line with positive slope
- Straight line with negative slope

Question Number: 65 Question Id: 67809417288 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The pendulum of length 'L' swings from mean position to mean position 'n' times in one second. The value of acceleration due to gravity is

Options:

$$1. \pi^2 n^2 L$$

 $_2$ $2\pi^2 n^2 L$

function is 2.2 eV, then the wavele	ngth of incident radiation is
Options:	
1. 4000Å	
2. <mark>8000</mark> Å	
_{3.} 3000Å	
4. 2000Å	
Orientation : Vertical	98 Display Question Number: Yes Single Line Question Option: No Option ay is greater than the critical angle at the core – cladding
interface in an optical fiber, then t	the ray travels
Options:	
in the core	
2. in the cladding	
in the buffer	
along the interface	
	Chemistry
Number of Questions:	25
Display Number Panel:	Yes
Group All Questions:	No
Question Number: 76 Question Id: 6780941729 Orientation: Vertical	99 Display Question Number : Yes Single Line Question Option : No Option
	tes that two electrons in same orbital have
aun 3 Exclusion principie stat	es that two electrons in same ofolial have

www.manaresults.co.in

Options:

If the maximum kinetic energy of emitted photo electrons from a metal is 0.9 eV and work

same spins

different spins

opposite spins

vertical spins

Question Number: 77 Question Id: 67809417300 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Orbits in which electrons move according to Bohr are

Options:

elliptical

2 cylindrical

3. circular

4 oval

Question Number: 78 Question Id: 67809417301 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Phosphorus has an atomic number of 15. A stable phosphorus atom has an electronic configuration of

$$1s^22s^22p^63p^5$$

$$_{2}$$
 1s²2s²2p⁶3s²3p³

$$_{3.}1s^{2}2s^{2}2p^{6}3s^{2}3p^{1}4s^{2}$$

$$_{4.} 1s^{2}1p^{6}1d^{7}$$

NaCl is classified as having what kind of bonds in the solid phase?
Options :
Covalent
2. Ionic
3 Polar
vander Waals
Question Number: 80 Question Id: 67809417303 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The Bond formed due to sharing of electrons is
Options :
Ionic bond
Metallic bond
Polar bond
Covalent bond
Question Number: 81 Question Id: 67809417304 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The normality of solution obtained by dissolving 5.3 grams of Na ₂ CO ₃ in 1 litre solution is
Options:
1N
0.1N
a. 0.05N
0.5N

Question Number: 82 Question Id. 67809417303 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The following solution has same molarity and normality
Options:
1. Na ₂ CO ₃
2 NaCl
$_{3}$ $H_{2}SO_{4}$
4. K ₂ Cr ₂ O ₇
Question Number: 83 Question Id: 67809417306 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
5 moles of a solute is dissolved in 10 litres of solution. What is its molarity?
Options:
1. 5 M
2, 2M
_{3.} 0.5M
4. 0.2M
Question Number: 84 Question Id: 67809417307 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Process in which acids (H ⁺) and bases (OH ⁻) react to form salts and water is called
Options:
Neutralization 1.
2. Halogenation
3. Hydrogenation
4 Hydrolysis
Question Number: 85 Question Id: 67809417308 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical WWW . Manager Sull's . Co. In

A substance that donates a pair of electrons to form coordinate covalent bond is called
Options:
1. Lewis acid
2. Lewis base
3. Bronsted-Lowry acid
Bronsted-Lowry base
Question Number : 86 Question Id : 67809417309 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
One Faraday is equal to
Options:
_{1.} 99650 C
_{2.} 93100 C
_{3.} 96500 C
_{4.} 94500 C
Question Number: 87 Question Id: 67809417310 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The cell reaction of a cell is $Mg(s) + 2 H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_{2}(g)$. If the standard reduction potential of Zn is -2.372 V , then the emf of the cell is
Options:
1. +2.372 V
$_2 - 2.372 \text{ V}$
3. 0.00 V
41.372 V
www.manaresults.co.in
Question Number: 88 Question Id: 67809417311 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Galvanic cells are the cells which convert	
Options:	
Electrical energy to chemical energy	
2. Chemical energy to electrical energy	
Chemical energy to free energy	
Potential energy to kinetic energy	
Question Number: 89 Question Id: 67809417312 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical	1
Mass of substance produced at electrode is directly proportional to the quantity electricity passed. This is known as	y of
Options :	
_{1.} Faraday's second law	
Faraday's first law	
Newton's third law	
Newton's first law	
Question Number : 90 Question Id : 67809417313 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical	1
Hardness of water is expressed in terms of equivalent of	
Options:	
$_{1}$ Na ₂ CO ₃	
$_{2}$ $K_{2}CO_{3}$	
$_{3.}$ MgCO ₃	
CaCO ₃ www.manaresults.co.in	

Question Number: 91 Question Id: 67809417314 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Temporary hardness is caused by
Options:
Carbonates of calcium and magnesium
Chlorides of calcium and magnesium
Sulphates of calcium and magnesium
Nitrates of Calcium
Question Number: 92 Question Id: 67809417315 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The exhausted zeolite bed can be regenerated by washing with
Options:
1. NaCl
_{2.} dil. NaOH
3. dil. HCl
4. Distilled water
Question Number: 93 Question Id: 67809417316 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Corrosion is an example of
Options:
1. Oxidation
2. Reduction
Electrolysis 3.
Halogenation www.manaresults.co.in

Question Number: 94 Question Id: 67809417317 Display Question Number: Yes Single Line Question Option: No Option The composition of rust is **Options:** 1. Fe(OH)3 2. FeCl₃ 3. FeO Fe₂O₃. xH₂O Question Number: 95 Question Id: 67809417318 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical Which one of the following statement is not true? Natural rubber has the trans-configuration at every double bond Buna-S is a copolymer of butadiene and styrene Natural rubber is a 1, 4-polymer of isoprene In vulcanization, the formation of sulphur bridges between different chains makes rubber harder and stronger Question Number: 96 Question Id: 67809417319 Display Question Number: Yes Single Line Question Option: No Option The monomers of Buna-S rubber are **Options:** Styrene and butadiene

www.manaresults.co.in

Styrene and 2-propene

3. Isoprene and butadiene

Question Number: 97 Question Id: 67809417320 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical The plastics which soften when heat is applied with or without pressure, but require cooling to set them to shape are called as **Options:** Thermosofting materials Thermosetting materials Thermoplastic materials Thermostatting materials Question Number: 98 Question Id: 67809417321 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** Which one of the following statement is not true about ideal fuel? **Options:** High calorific value , High moisture content 3 Low cost Moderate ignition temperature Question Number: 99 Question Id: 67809417322 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** Environmental pollution affects **Options:** Humans only

www.manaresults.co.in

Styrene and sulphur

, Plants only

Biotic components	
Both abiotic and biotic con	ponents
Question Number: 100 Question Id: 678094 Orientation: Vertical Layer of atmosphere in which	17323 Display Question Number : Yes Single Line Question Option : No Option h ozone layer lies is
Options: Troposphere	
2. Stratosphere	
Exosphere 3.	
4 Mesosphere	
Number of Questions: Display Number Panel: Group All Questions:	Civil Engineering 100 Yes No
Question Number: 101 Question Id: 678094 Orientation: Vertical	17324 Display Question Number : Yes Single Line Question Option : No Option
The property of material which	can undergo considerable deformation before failure is calle
Options: Ductility 1.	
2. Brittle	
3. Plastic	
Malleability	
7,77,777,77	manaresults co in

Question Number: 102 Question Id: 67809417325 Display Question Number: Yes Single Line Question Option: No Option

A uniform solid circular bar of length L, cross sectional area A and self weight W is hanging vertically from the upper end. It is also subjected to a downward load of W at the free end. The elongation of the bar is

Options:

$$\frac{2WL}{AE}$$

$$\frac{3}{2} \cdot \frac{WL}{AE}$$

$$\frac{WL}{AE}$$

$$\frac{1}{2} \cdot \frac{WL}{AE}$$

Question Number: 103 Question Id: 67809417326 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

A composite bar ABCD is subjected to loads as show in figure. The force in the bar BC is

Options:

30 kN (Compressive)

90 kN (Compressive)

90 kN (Tensile)

www.manaresults.co.in

Question Number: 104 Question Id: 67809417327 Display Question Number: Yes Single Line Question Option: No Option

Orientation: Vertical

A mild steel bar of square section 10 mm \times 10 mm and length 1 m is subjected to an axial pull of 20 kN. If $E = 2 \times 10^5$ N/mm², the change in length of the bar due to the axial pull is

Options:

0.1 mm

- 2. 1 mm
- 3 2 mm
- 4 4 mm

Question Number: 105 Question Id: 67809417328 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

For an isotropic material, the relationship between modulus of elasticity (E), Bulk modulus (K)

and Poisson's ratio (μ) is

Options:

$$K = \frac{E}{2(1-\mu)}$$

$$K = \frac{E}{2(1+\mu)}$$

$$K = \frac{E}{3(1-2\mu)}$$

$$K = \frac{E}{3(1+\mu)}$$

Question Number: 106 Question Id: 67809417329 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The strain energy stored in a body within the elastic limit due to externally applied

loads is

Options:

Resilience

```
Modulus of resilience
  Modulus of rupture
Question Number: 107 Question Id: 67809417330 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
A simply supported beam of span 2L is subjected to a concentrated load of W at mid span. The
 bending moment under the concentrated load is
Options:
1 2WL
Question Number: 108 Question Id: 67809417331 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
 A cantilever beam AB of length 2 m is fixed at A and free at B. It is subjected to a downward
 uniformly distributed load of 24 kN/m over the span. If the resultant bending moment at A is
 equal to zero, the magnitude of the concentrated load to be applied at the free end B is
Options:
  24 kN (upward)
  24 kN (Downward)
48kN (upward)
                         www.manaresults.co.in
```

Proof resilience

```
48 kN (Downward)
Ouestion Number: 109 Ouestion Id: 67809417332 Display Ouestion Number: Yes Single Line Ouestion Option: No Option
 A simply supported beam AB of span 4 m is subjected to a uniformly distributed load of
 24 kN/m over the left half of the span. The bending moment at mid-span is
Options:
  12 kNm (Hogging)
, 12 kNm (Sagging)
24 kNm (Sagging)
4 24 kNm (Hogging)
Ouestion Number: 110 Ouestion Id: 67809417333 Display Ouestion Number: Yes Single Line Ouestion Option: No Option
Orientation: Vertical
 An over hanging beam ABC of length 8 m is supported by hinges at A and B such that AB = 6 m
 and BC=2m. It is subjected to a concentrated load of 48 kN at the free end C. The reaction at the
 support A is
Options:
16 kN (upward)
2 16 kN (downward)
  24 kN (upward)
24 kN (downward)
```

Question Number: 111 Question Id: 67809417334 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The bending stress in a T beam section is maximum at

Options: www.manaresults.co.in

```
the top fibre
 the bottom fibre
the neutral axis
4 mid point
Question Number: 112 Question Id: 67809417335 Display Question Number: Yes Single Line Question Option: No Option
At the neutral axis of a beam cross section
Options:
  Shear stress is zero
  Bending stress is zero
   Shear stress is minimum
  Bending stress is maximum
Question Number: 113 Question Id: 67809417336 Display Question Number: Yes Single Line Question Option: No Option
 A rectangular beam of width 100 mm and depth 200 mm is subjected to a bending moment
 of 40 kNm. The maximum bending stress developed in the section is
Options:
1 30 N/mm<sup>2</sup>
<sub>2</sub> 60 N/mm<sup>2</sup>
  90 N/mm<sup>2</sup>
4. 120 N/mm<sup>2</sup>
                          www.manaresults.co.in
Question Number: 114 Question Id: 67809417337 Display Question Number: Yes Single Line Question Option: No Option
```

Orientation: Vertical

Question Number: 117 Question Id: 67809417340 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The shear stress at the center of a circular shaft subjected to twisting moment is
Options:
1. zero
2. Maximum
3. 1.5 times the average shear stress
1.33 times the average shear stress
Question Number: 118 Question Id: 67809417341 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
A solid circular shaft rotates at 160 rpm and is subjected to a torque of 1500 Nm. The power, in kW
transmitted by the shaft is
Options:
1.4π
2, 8 π
$_3$ 16 π
$_4$ 32 π
Question Number: 119 Question Id: 67809417342 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The torsional rigidity of a circular shaft of diameter D is proportional to
Options:
$_{1.}$ D
$_{2.}$ D^2
$_3$ D^3
$_{4}$ D^{4}
www.manaresults.co.in

Polar moment of Inertia of a solid circular shaft of diameter D is

Options:

$$\frac{\pi D^3}{16}$$

$$\frac{\pi D^3}{32}$$

$$\frac{\pi D^4}{32}$$

$$\frac{\pi D^2}{32}$$

Question Number: 121 Question Id: 67809417344 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

For a flexural member, the equation connecting the Bending Moment and Deflection is

Options:

$$M = EI \frac{dy}{dx}$$

$$M = EI \frac{d^2 y}{dx^2}$$

$$M = EI \frac{d^3 y}{dx^3}$$

$$EI = M \frac{d^2 y}{dx^2}$$

Question Number: 122 Question Id: 67809417345 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

$$\frac{WL^3}{2EI}$$

$$\frac{WL^3}{3EI}$$

Question Number: 125 Question Id: 67809417348 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

For a long column of length L and flexural rigidity EI fixed at both the ends, the

Euler's bucking load is

Options:

$$\frac{4\pi^2 EI}{L^2}$$

$$2\pi^2 EI$$

$$\frac{\pi^2 EI}{L^2}$$

$$\frac{\pi^2 EI}{4L^2}$$

Question Number: 126 Question Id: 67809417349 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Euler's formula for buckling load is valid for

- Short columns
- Long columns
- Very short columns

Short and long columns Ouestion Number: 127 Ouestion Id: 67809417350 Display Ouestion Number: Yes Single Line Ouestion Option: No Option Four vertical columns of same material, height and weight have the same end conditions. Which one of the cross sections will carry the maximum compressive load? **Options:** Solid circular section Solid square section 3 Solid rectangular section Thin hollow circular section Question Number: 128 Question Id: 67809417351 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical Radius of gyration of a section is proportional to the square root of the **Options:** sectional area depth of the section inverse of the sectional area inverse of the moment of inclination Question Number: 129 Question Id: 67809417352 Display Question Number: Yes Single Line Question Option: No Option **Orientation**: Vertical A long column fails by **Options:** 1 Tension 2. Shearing www.manaresults.co.in

3 Buckling

Crushing

Question Number: 130 Question Id: 67809417353 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

A fixed beam of span L is subjected to a concentrated load of W at mid span. If the flexural rigidity of the beam is 2EI, the deflection at mid span of the beam is

Options:

$$\frac{1}{192} \frac{WL^3}{EI}$$

$$\frac{1}{2.384} \frac{WL^3}{EI}$$

$$\frac{5}{384} \cdot \frac{WL^3}{EI}$$

$$\frac{1}{48} \cdot \frac{WL^3}{EI}$$

Question Number: 131 Question Id: 67809417354 Display Question Number: Yes Single Line Question Option: No Option

For a fixed beam, at the fixed end

Options:

Slope is zero and deflection is maximum

Slope is maximum and deflection is zero

Both slope and deflection are zero

Both slope and deflection are maximum

www.manaresults.co.in

Question Number: 132 Question Id: 67809417355 Display Question Number: Yes Single Line Question Option: No Option

Orientation: Vertical

A propped cantilever AB of span L is fixed at A and supported by a prop at B and is subjected to a uniformly distributed downward load of w per metre length throughout. The reaction of the prop is

Options:

$$\frac{3}{8}$$
. w. L. (Downward)

$$\frac{3}{8}$$
. w. L (Upward)

$$\frac{5}{16}$$
.wL (Upward)

$$\frac{5}{16}$$
.wL (Downward)

Question Number: 133 Question Id: 67809417356 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The total lateral pressure per meter length on a vertical wall of height h, retaining water is

Options:

$$_{1}$$
 γh

$$\frac{\gamma h}{2}$$

$$\frac{\gamma h^2}{2}$$

$$\frac{\gamma h^2}{4}$$

Question Number: 134 Question Id: 67809417357 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

For a retaining wall of width b, the limiting value of eccentricity for no tension to occur is

Options:

$$\frac{b}{2}$$

www.manaresults.co.in

b
$\frac{b}{3}$
$\underline{\underline{b}}$
3. 6
<u>b</u> 4. 8
Question Number: 135 Question Id: 67809417358 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Which of the following structure is determinate?
Options:
Overhanging beam
Propped cantilever
Fixed beam
Continuous beam 4
Question Number : 136 Question Id : 67809417359 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
The factor of safety against sliding for retaining wall is
Options:
1. 1.25
2. 1.50
3, 1.75
4 2.00
Question Number: 137 Question Id: 67809417360 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Mohr's theorems are wart for monneting sults.co.in

Shear force and Bending moment

Shear force and Deflection

3 Slope and Bending moment

Slope and Deflection

Question Number: 138 Question Id: 67809417361 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If n is number of members and j is number of joints, the condition for perfect pin jointed framed

structure is

Options:

$$n = 2j + 3$$

$$n = 2j - 3$$

$$n = 3j + 2$$

$$n = 3j - 2$$

Question Number: 139 Question Id: 67809417362 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The triangular shape of a pin jointed framed structure is

- 1 Perfect
- 2 Imperfect
- . Deficient
- 4 Redundant

The kern of a circular section is a
Options:
circle of diameter equal to half of its diameter
circle of diameter equal to half of its radius
circle of radius equal to half of its diameter
circle of radius equal to half of its radius 4.
Question Number: 141 Question Id: 67809417364 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The flexural strength of M25 grade concrete is
Options: 1. 1.5 N/mm ²
2. 1.8 N/mm ²
3. 2.8 N/mm ²
4. 3.5 N/mm ²
Question Number : 142 Question Id : 67809417365 Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical
The acceptable limit for the safety and serviceability requirements before failure occurs is called
Options:
Failure point
2. Breaking point
3. Limit state
Yield point www.manaresults.co.in
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Question Number: 143 Question Id: 67809417366 Display Question Number: Yes Single Line Question Option: No Option

The limiting depth of neutral axis for Fe500 grade steel is

Options:

$$x_{u, \text{lim}} = 0.43d$$

$$x_{u, \text{lim}} = 0.46d$$

$$x_{u,\text{lim}} = 0.48d$$

$$x_{u, \text{lim}} = 0.53d$$

Question Number: 144 Question Id: 67809417367 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If the stress in steel reaches its permissible value early than the stress in concrete reaches its

permissible value, the beam section is called

Options:

Under-reinforced section

Over-reinforced section

Balanced section

Economic section

Question Number: 145 Question Id: 67809417368 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

For a doubly reinforced beam, the maximum strain in compression steel is

Options:

1. 0.002

2. 0.0035

$$0.002 \left(\frac{x_u - d'}{x_u} \right)$$

$$0.0035 \left(\frac{x_u - d'}{x_u} \right)$$

Question Number: 146 Question Id: 67809417369 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The effective width (b_f) of a T beam as per IS:456 is

Options:

$$b_f = \frac{l_0}{6} + 3b_w + 6D_f$$

$$b_f = \frac{l_0}{6} + b_w + 6D_f$$

$$b_f = \frac{l_0}{6} + b_w + 3D_f$$

$$b_f = \frac{l_0}{12} + b_w + 3D_f$$

Question Number: 147 Question Id: 67809417370 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A rectangular beam of width 200 mm and effective depth 300 mm is subjected to a shear force of 60 KN.

If the permissible shear stress is 0.2 N/mm², the design shear force to be resisted by vertical stirrups is

- 1 12 kN
- 2 24 kN
- 3. 48 kN
- 4 60 kN

Bottom face in length direction

Bottom face perpendicular to the length Question Number: 154 Question Id: 67809417377 Display Question Number: Yes Single Line Question Option: No Option The load carrying capacity of a helically reinforced column as compared to that of a laterally tied column is about **Options:** 1 5% less 2 5% more 3 10% less 4 10% more Question Number: 155 Question Id: 67809417378 Display Question Number: Yes Single Line Question Option: No Option The purpose of lateral ties in a short RC column is to **Options:** facilitate construction facilitate compaction of concrete avoid buckling of longitudinal bars increase the load carrying capacity of the column Question Number: 156 Question Id: 67809417379 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** When a RCC short column is loaded axially, the concrete inside the core is subjected to **Options:** Uniaxial compression , Biaxial compression www.manaresults.co.in

Bending and compression Tension Question Number: 157 Question Id: 67809417380 Display Question Number: Yes Single Line Question Option: No Option The critical section for bending moment in an isolated footing occurs **Options:** at the center of the column at the face of the column at a distance of d/2 from the face of column at a distance of d from the face of column Question Number: 158 Question Id: 67809417381 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The factor of safety for concrete in working stress method of design is **Options:** 1.15 2 1.50 3. 2.00 4 3.00 Question Number: 159 Question Id: 67809417382 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** If m is the modular ratio, the equivalent modular ratio for compression zone is **Options:** 1.2m1.25*m* www.manaresults.co.in

```
1.5m-1
Question Number: 160 Question Id: 67809417383 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
 As compared to working stress method of design, limit state method takes concrete to
Options:
the same stress level
2 a lower stress level
a higher stress level
  a higher or lower stress level
Question Number: 161 Question Id: 67809417384 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
 The line joining some fixed points on the main survey line is known as
Options:
  Contour line
2 Base line
   Tie line
  Check line
Question Number: 162 Question Id: 67809417385 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
 Which of the following is an obstacle to both chaining and ranging?
Options:
  Building
2 Lake
                         www.manaresults.co.in
```

3. 1.5 m

```
3. Pond
4 River
Question Number: 163 Question Id: 67809417386 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
 The most accurate method for the measurement of the base line is
Options:
   Invar tape
2. Chain
   Tacheometry
4 EDM
Question Number: 164 Question Id: 67809417387 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
 The correction for sag in measurement of base line by chain is
Options:
  always additive
  always negative
  always zero
  additive or negative
Question Number: 165 Question Id: 67809417388 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
If the fore bearings of the sides of a triangle are 45°, 165° and 285° respectively, the triangle is
Options:
an equilateral
                          www.manaresults.co.in
2 an isosceles
```


In levelling, the sum of all back sights and sum of all fore sights are 8.575m and 8.495 m respectively. The reduced level of initial bench mark is 100.000 m. The reduced level of the last point where the staff is held will be

Options:

- 108.575m
- 2 108.495m
- 3 100.080m
- 4 99.920m

Question Number: 172 Question Id: 67809417395 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

If the distance between the instrument station and the staff station is 1 km, the combined correction due to curvature and refraction as applied to the staff reading is

Options:

- ₁ -0.0673 m
- 2 +0.0673 m
- ₃ -0.0785 m
- ₄ +0.673 m

Question Number: 173 Question Id: 67809417396 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A set of closed contours with higher values inward indicates

- Uniform slope
- Depression
- www.manaresults.co.in

Overhanging cliff

Question Number: 174 Question Id: 67809417397 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Let f be the focal length of the objective, i be the stadia hair interval and d be the horizontal distance from objective to the vertical axis of the instrument. The additive constant for a tachometer is

Options:

$$\int f+i$$

$$\int f + d$$

$$\int f/i$$

$$\int d$$

Question Number: 175 Question Id: 67809417398 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The minimum number of satellites required for determining latitude, longitude and altitude of a

point in GPS are

Options:

1. One

₂ Two

3. Three

4. Four

Question Number: 176 Question Id: 67809417399 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Newton's law of viscosity for a fluid states that the shear stress is proportional to

Options:

Viscosity

www.manaresults.co.in

2 Pressure Angular deformation Rate of angular deformation Question Number: 177 Question Id: 67809417400 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The unit of kinematic viscosity is m²/sec 2. kg m/sec² 3. N m/sec² ₄ N m²/sec Question Number: 178 Question Id: 67809417401 Display Question Number: Yes Single Line Question Option: No Option For a vertical plane immersed in a liquid, the centre of pressure is always **Options:** above centroid 2 below centroid at centroid at one-third of height Question Number: 179 Question Id: 67809417402 Display Question Number: Yes Single Line Question Option: No Option Orientation : Vertical Weight of the substance per unit volume is **Options:** Mass density www.manaresults.co.in

```
Specific weight
  Specific gravity
  Specific volume
Question Number: 180 Question Id: 67809417403 Display Question Number: Yes Single Line Question Option: No Option
The pitot static tube measures
Options:
Static pressure
  Dynamic pressure
Difference in static and dynamic pressure
Difference in total and static pressure
Question Number: 181 Question Id: 67809417404 Display Question Number: Yes Single Line Question Option: No Option
 Tracing of the motion of any one fluid particle is known as
Options:
  Stream line
  Streak line
  Path line
  Equipotential line
Question Number: 182 Question Id: 67809417405 Display Question Number: Yes Single Line Question Option: No Option
In a pipe flow, when a venturimeter is changed from horizontal position to inclined position, the
                         www.manaresults.co.in
reading
```

increases
2. decreases
remains same
varies depending on the inclination
Question Number: 183 Question Id: 67809417406 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
If H is the height of the water surface above the crest of a rectangular notch, the discharge of flow
through it is proportional to
Options:
$_{1\cdot}^{}H$
$_{2.}H^{2}$
$_{3.}H^{3/2}$
$_{4.}H^{5/2}$
Question Number: 184 Question Id: 67809417407 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
The difference between the Total Energy Line (TEL) and Hydraulic Grade Line (HGL) is equal to
Options:
Pressure head
2. Velocity head
Datum head
Static head
Question Number: 185 Question Id: 67809417408 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical WWW.manaresults.co.in As per Darcy-Weisbach equation, the head loss due to friction in pipes is directly proportional to

Options:
square of the diameter of the pipe
square of the length of the pipe
square of the velocity of the flow
the velocity of the flow
Question Number: 186 Question Id: 67809417409 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
For a laminar flow in a pipe, the shear stress is maximum at
Options:
the centre and decreases linearly towards the wall
the centre and decreases parabolically towards the wall
the wall and decreases linearly towards the centre
the wall and decreases parabolically towards the centre
Question Number: 187 Question Id: 67809417410 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
A pump is a device which converts
Options:
Mechanical energy to Hydraulic energy
Hydraulic energy to Mechanical energy
Kinetic energy to Hydraulic energy
4 Mechanical energy to Electrical energy
Question Number: 188 Question Id: 67809417411 Display Question Number: Yes Single Line Question Option: No Option

Orientation: Vertical

Kaplan turbine is suitable for manaresults.co.in

Options:

High head, low discharge

High head, high discharge

- Low head, low discharge
- Low head, high discharge

Question Number: 189 Question Id: 67809417412 Display Question Number: Yes Single Line Question Option: No Option

A rectangular open channel section is most economical when width is equal to

Options:

- twice the depth of flow
- the depth of flow
- half the depth of flow
- one third the depth of flow

Question Number: 190 Question Id: 67809417413 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical**

If A: Cross sectional area of flow, P: Wetted perimeter, R: Hydraulic mean depth, D:

Hydraulic depth, C: Chezy's constant and S: Slope of channel bottom, then Chezy's

formula for discharge (Q) is

Options:

$$Q = C\sqrt{RS}$$

$$Q = AC\sqrt{RS}$$

$$Q = C\sqrt{DS}$$

$$_{3}Q = C\sqrt{DS}$$

www.manaresults.co.in

www.manaresults.co.in

3 Mass inflow curve 4 Mass outflow curve Question Number: 194 Question Id: 67809417417 Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical An accurate estimate of average rainfall in a particular catchment area can be obtained by **Options:** Arithmetic average method Thiessen polygon method 3 Isohyetal method Normal ratio method Question Number: 195 Question Id: 67809417418 Display Question Number: Yes Single Line Question Option: No Option Orientation : Vertical The under sluices in diversion head works are provided **Options:** to prevent fish flow , to prevent hydraulic jump to avoid parallel flow to the weir 4 to control silt entry into the channel Question Number: 196 Question Id: 67809417419 Display Question Number: Yes Single Line Question Option: No Option **Orientation: Vertical** The difference between the top of the dam and high flood level (HFL) is known as **Options:** Free board Safe margin www.manaresults.co.in

```
Free flow depth
Question Number: 197 Question Id: 67809417420 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
 Major resisting force against the lateral pressure in a gravity dam is
Options:
  Self weight of dam
Uplift pressure
Wave pressure
  Water pressure
Question Number: 198 Question Id: 67809417421 Display Question Number: Yes Single Line Question Option: No Option
Orientation: Vertical
A rock toe filter in an earth dam is provided on
Options:
  Upstream end of the bund
Downstream end of the bund
  Under the base of the bund
  The middle third of the base of the bund
Question Number: 199 Question Id: 67809417422 Display Question Number: Yes Single Line Question Option: No Option
Orientation : Vertical
The flow in a chute spillway is generally
Options:
1. Critical
                         www.manaresults.co.in
```

3 Wave height

- 2 Uniform
- Supercritical 3
- 4. Subcritical

Question Number: 200 Question Id: 67809417423 Display Question Number: Yes Single Line Question Option: No Option

According to Lacey's theory, the Wetted Perimeter P is related to the discharge Q as

$$P = 4.75Q^{1/2}$$

$$_{2}$$
 $P = 4.75Q$

$$_{3} P = 4.75 Q^{3/2}$$

$$_{3.}P = 4.75Q^{3/2}$$
 $_{4.}P = 4.75Q^{5/2}$