
co9-c-106

3016

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2015 DCE-FIRST YEAR EXAMINATION

ENGINEERING MECHANICS

Time : 3 hours]
Total Marks : 80

PART—A $3 \times 10=30$

Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define (a) equilibrium, (b) resultant and (c) equilibrant.
2. List any three properties of a couple.
3. State the formula for \bar{x} and \bar{y} for any section, i.e., centroid.
4. Find the moment of inertia of a rectangle 50 mm wide and 100 mm deep about its base :

5. Define the following terms :
(a) Hooks' law
(b) Factor of safety
6. Define (a) proof resilience and (b) modulus of resilience.
7. Define the following terms :
(a) Young's modulus
(b) Bulk modulus
(c) Modulus of rigidity
8. Define the following terms :
(a) Shear force
(b) Bending moment
9. A simply supported beam of span 6 m carries a UDL of $10 \mathrm{kN} / \mathrm{m}$ over its entire length. Draw the SF diagram.
10. A simply supported beam of L meters long carries a point load W at a distance of a from the left-hand side, and b from right-hand side. Draw the sketch and write the equations for reactions.

> PART—B
$10 \times 5=50$

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) Define the following terms :
(i) Force
(ii) Resultant
(iii) Equilibrant
(b) The magnitude of two forces is such that when acting at right angles produce a resultant of force of $\sqrt{ } 10 \mathrm{~N}$ and when acting at 60° produce a resultant equal $\sqrt{ } 13 \mathrm{~N}$. Calculate the magnitude of the two forces.
[Contd...
12. A built-up section is made up of plates as shown in the figure below. Find the centroid of the section with reference to base :

13. A section is built-up of two $225 \mathrm{~mm} \times 85 \mathrm{~mm}$ channels packed back-to-back at a distance of $x \mathrm{~mm}$ apart as shown in the figure below which are connected by battens. Determine the value of x so that $I_{x x}$ of the built-up section is equal to $I_{y y}$ of built-up section. The properties of each channel section are $A=3301 \mathrm{~mm}^{2} ; \quad C_{y y}=23 \mathrm{~mm} ; \quad I_{x x}=2694.6 \times 10^{6} \mathrm{~mm}^{4}$; $I_{y y}=187 \cdot 2 \times 10^{6} \mathrm{~mm}^{4}$:

14. A steel bar 50 mm diameter is completely encased in a brass tube of 80 m outside diameter. The length of the composite bar is 400 mm . If this assembly is subjected to a compressive force of 80 kN . Determine-
(a) stresses in steel bar and brass tube;
(b) change in length of the assembly.

Given E for steel $=208 \mathrm{kN} / \mathrm{mm}^{2}$ and E for brass $=$ $104 \mathrm{kN} / \mathrm{mm}^{2}$. Also find the load shared by each material.
15. A steel bar 1.6 m long is acted upon by forces as shown in the figure below. Find the elongation of the bar. Given $E=200 \mathrm{GPa}$:

16. Draw the sketch of a symmetrically loaded over hanging beam with a concentrated load at the centre.
17. A simply supported beam of 6 m long carries a UDL of $6 \mathrm{kN} / \mathrm{m}$ over a length of $2 \mathrm{~m}, 3 \mathrm{~m}$ away from the left-hand support A, towards right. Also it carries a point load of 10 kN at 1 m from left-hand support. Draw the SF and BM diagrams. Indicate the position and magnitude of maximum BM.
18. (a) Determine the centroid of the lamina shown in the figure below :

(b) A hollow circular shaft of internal diameter equal to $0 \cdot 8$ times external diameter has polar moment of inertia equal to that of a solid circular shaft of diameter 160 mm . Find the external and internal diameters of a hollow circular shaft.

