## 3016

## BOARD DIPLOMA EXAMINATION, (C-09) <br> OCT/NOV-2018 DCE-FIRST YEAR EXAMINATION

## ENGINEERING MACHANICS

Time : 3 hours
[ Total Marks : 80

PART—A
$3 \times 10=30$
Instructions: (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the system of forces a) Co-planar Forces b) Non-Coplanar Forces.
2. A body is acted upon by an upward force of 500 kN and horizontal force of 800 kN . Find the Magnitude and direction of the resultant force.
3. Define the centre of gravity of a body.
4. State the Parallel axis theorem.
5. Define i) Young's modulus ii) Shear modulus
6. Define the terms a) Malleability b) Ductility
7. If a bar is subjected to liner strain $1 \times 10^{-3}$ and lateral starin $2.5 \times 10^{-4}$. Find the poisson's ratio.
8. Find the support reactions for a simply supported beam of span 8 m subjected to point laods 10 kN and 20 kN at 3 m and 6 m from left hand support respectively.
9. Define Shear force and Bending Moment.
10. Define Point of Contra flexure.

Instructions: (1) Answer any five questions.
(2) Each questions carries ten marks.
(3) Answers should be comprehensive and the criteria for valuation are the content but not the length of the answer.
11. A weight of 1000 N is supported by two chains as shown in figure below. Determine the tension in each chain.

12. Find the Centroid $\bar{X}$ form the back of the channel given in the figure below.

13. Find moment of inertia about the Centroidal axes for given I - section.

14. a) Find the Centroid $\overline{\mathrm{Y}}$ for the T-section shown in the figure below.

b) Find the moment of inertia about X -axis and Y -axis for a rectangle of width 300 mm and 450 mm depth.
15. A copper rod 20 mm diameter and 500 mm long undergoes an elongation of 1 mm and decrease in diameter $9 \times 10^{-3} \mathrm{~mm}$ under tensile load of 50 kN . Detremine the Young's Modulus and Poisson's ratio.
16. A bar of steel of diameter 20 mm and length 600 mm is subjected to forces as shown below. Determine the change in lenght. $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{nm}^{2}$.

17. Draw SFD and BMD for a Simply supported beam of span 4 m subjected to Uniformly distributed load of $15 \mathrm{kN} / \mathrm{m}$ throughout the span and give the values of Max. B.M and S.F
18. Draw SFD and BMD for a Cantilever beam of span 3 m subjected to UDL 30N/m throughout the span. State the Maximum Values of SF and BM .

