3219

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL-2016 DCE-THIRD SEMESTER EXAMINATION

STRENGTH OF MATERIALS AND THEORY OF STRUCTURES

Time : 3 hours]
[Total Marks : 80

PART-A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define simple bending and bending stress.
2. A circular beam of 150 mm diameter is subjected to a shear force of 10 kN . Calculate the value of maximum shear stress.
3. Draw the deflected shapes of-
(a) fixed beam;
(b) two-span continuous beam.
4. State the relation between curvature, slope and deflection of a loaded beam and explain the terms.
5. A concentrated load of 5 kN is acting at the centre of a simply supported beam of span 5 m . Determine the value of flexural rigidity of beam section if the deflection is 10 mm .
6. If the actual length of the column is 5 m , then determine the effective lengths with any three different end conditions.
[Contd...
7. Define :
(a) Strut
(b) Column
(c) Stanchion
8. Write the formula for acting earth pressure on a retaining wall with inclined back fill and explain the terms.
9. Define :
(a) Statically determinate frame
(b) Statically indeterminate frame
10. A solid circular shaft of diameter 30 mm is tested under torsion. The gauge length of test specimen is 300 mm . A torque of $2 \mathrm{kN}-\mathrm{m}$ produces an angular twist of 1°. Determine the modulus of rigidity of the shaft.

PART—B

$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. A T-section of $150 \mathrm{~mm} \times 100 \mathrm{~mm} \times 15 \mathrm{~mm}$ is provided as a cantilever for a length of 3 m with its flange at the top carries a load W at its free end. What can be the maximum value of W, so that the stress in the section must not exceed $50 \mathrm{~N} / \mathrm{mm}^{2}$? Also calculate the actual stresses in tension and compression due to bending.
12. A 300 mm deep, 150 mm wide rolled steel joist of I-section with flanges 15 mm thick, web 10 mm thick is used as simply supported beam of span 4 m . Find the UDL the beam can carry without exceeding the shear stress of $40 \mathrm{~N} / \mathrm{mm}^{2}$.
[Contd...
13. Derive the formulae for the maximum slope and maximum deflection of a simply supported beam of $\operatorname{span} l$ with a point load W at its mid span in terms of flexural rigidity. Use double-integration method.
14. A simply supported beam of 8 m span carries two point loads of 20 kN each placed at a distance of 3 m from either support. Determine the maximum slope and deflection in the beam. Take $E I=8 \times 10^{4} \mathrm{kN}-\mathrm{m}^{2}$. Use Mohr's theorems.
15. A hollow cylindrical cast iron column is 4 m long both ends being fixed. Design the column to carry an axial load of 250 kN . Use Rankine's formula and adopt a factor of safety of 4. The internal diameter may be taken as 0.80 times the external diameter. Take $f_{c}=550 \mathrm{~N} / \mathrm{mm}^{2}$ and a or $\alpha=(1 / 1600)$.
16. A cast iron hollow cylindrical column 3 m in length when hinged at both ends, has a critical buckling load of $P \mathrm{kN}$. When the column is fixed at both the ends, its critical load rises to $(P+300) \mathrm{kN}$. If the ratio of external diameter to internal diameter is 1.25 and $E=100 \mathrm{kN} / \mathrm{mm}^{2}$, determine the external diameter of the column.
17. A trapezoidal concrete dam is 2 m wide at top and 16 m high with its vertical face on water side. A free board of 2 m is to be provided. Find base width for most economical section of the dam. Take specific weight of concrete $=23 \mathrm{kN} / \mathrm{m}^{3}$ and specific weight of water $=10 \mathrm{kN} / \mathrm{m}^{3}$.
18. Determine the forces in the members $A B, A E, B E$ and $B C$ of the truss shown in figure by method of joints.

