3219

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2016 DCE-THIRD SEMESTER EXAMINATION

STRENGTH OF MATERIALS AND THEORY OF STRUCTURES

Time : 3 hours]
[Total Marks : 80
PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Define the terms (a) bending stress, (b) neutral axis and (c) moment of resistance. $1 \times 3=3$
2. A timber joist of square section $200 \mathrm{~mm} \times 200 \mathrm{~mm}$ is simply supported at the ends and carries a UDL of $25 \mathrm{kN} / \mathrm{m}$ over a length of 3 m . Calculate the maximum bending stress induced in beam.
3. Calculate the slope and deflection for a cantilever beam of span 6 m and carries a UDL of $4 \mathrm{kN} / \mathrm{m}$ over its entire span. Take $E=200 \mathrm{kN} / \mathrm{mm}^{2}$ and $I=156.5 \times 10^{6} \mathrm{~mm}^{4}$.
4. Define stiffness and draw the deflected shape of cantilever beam and two-span continuous beam.
5. Calculate the prop reaction when the prop is placed at free end for a cantilever beam of length 4 m and carries a point load 20 kN at mid-span.
6. Define slenderness ratio and calculate the slenderness ratio for a rectangular column $200 \mathrm{~mm} \times 300 \mathrm{~mm}$ and 4 m long with both ends fixed.
7. Calculate the Euler's load for a circular column 60 mm diameter and 4 m long with both ends hinged. Take $E=80 \mathrm{kN} / \mathrm{mm}^{2}$.
8. Define (a) active earth pressure, (b) passive earth pressure and (c) angle of repose.
9. Define a frame and list different types of frames.
10. Calculate the torque required for a shaft of 80 mm diameter and 10 m long with an angle of twist of 30°.
Take $G=80 \mathrm{kN} / \mathrm{mm}^{2}$.

PART-B

Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) List any five assumptions made in theory of simple bending.
(b) Calculate the dimensions of a strongest rectangular section which can be derived from a wooden \log of 300 mm diameter.
12. A $300 \mathrm{~mm} \times 150 \mathrm{~mm}$ RSJ of I-section with flange and web thickness 15 mm is used as a simply supported beam over a span of 8 m and carries a UDL of $30 \mathrm{kN} / \mathrm{m}$. Calculate the shear stress at salient points and plot the shear stress distribution diagram.
13. Calculate the maximum intensity of load that can be placed over a rectangular beam of $150 \mathrm{~mm} \times 350 \mathrm{~mm}$ deep over a span of 6 m , if maximum permissible bending stress is not to exceed $160 \mathrm{~N} / \mathrm{mm}^{2}$ and maximum deflection is limited to 12 mm . Take $E=210 \mathrm{kN} / \mathrm{mm}^{2}$ and $I=120 \times 10^{6} \mathrm{~mm}^{4}$.
14. Calculate the maximum slope and deflection of a simply supported beam carrying a UDL of $20 \mathrm{kN} / \mathrm{m}$ over its entire span of 8 m using Mohr's theorem. Take $E=210 \mathrm{kN} / \mathrm{mm}^{2}$ and $I=360 \times 10^{6} \mathrm{~mm}^{4}$.
15. Design a column to carry an axial load of 500 kN . The column is of hollow circular section and 4 m long with one end fixed and other hinged. Take external diameter $=1.25$ internal diameter. $E=210 \mathrm{kN} / \mathrm{mm}^{2}$.
16. Calculate the safe load for a hollow circular column having external diameter 250 mm and 25 mm thick is 4 m long with both ends fixed. Use Rankine's formula with factor of safety $=4$. Also calculate slenderness ratio and ratio of Rankine's to Euler's critical load. Take $f_{c}=550 \mathrm{~N} / \mathrm{mm}^{2}$, $\alpha=1 / 1600$ and $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
17. A masonry wall 15 m height has a vertical backfill up to top having a top width of 3 m . Calculate the minimum base width required to withstand the compressive stress only. Take specific weight of masonry and soil as $23 \mathrm{kN} / \mathrm{m}^{3}$ and $18 \mathrm{kN} / \mathrm{m}^{3}$. Angle of repose 30°.
18. Find the forces in each member for the truss shown below, using method of joints :

