3425

BOARD DIPLOMA EXAMINATION, (C-09)
MARCH/APRIL-2016
DCE-FOURTH SEMESTER EXAMINATION
QUANTITY SURVEYING
Time : 3 hours]
Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. State the need for quantity surveying.
2. What is an abstract estimate? Indicate its format.
3. The plan of compound wall is shown in figure below. Calculate its centre line length :

[Contd...
4. For a hipped roof shown in figure below. Calculate-
(a) length of common rafter;
(b) number of common rafters spaced at $500 \mathrm{~mm} \mathrm{c} / \mathrm{c}$, if the rise of roof is $\frac{1}{3}$ of span.

5. Calculate the quantities of ingredients for $10 \mathrm{cu} . \mathrm{m}$ of cement concrete of (1:2:4) proportion.
6. From the figure below, calculate the quantity of distribution steel $6 \mathrm{~mm} \phi @ 190 \mathrm{~mm}$ c/c required for bottom mat :

Top cover (clear) $=25 \mathrm{~mm}$
Side clear cover $=25 \mathrm{~mm}$
Bottom cover (clear) $=15 \mathrm{~mm}$
6 mm dia. bars $0.22 \mathrm{~kg} / \mathrm{m}$

[Contd...
7. Explain 'Trapezoidal Rule' and 'Prismoidal Rule' with usual notations.
8. From the accompanying figure of a circular soak pit, calculate the quantity of-
(a) loose packing of brick jelly 40 mm size;
(b) RCC 1:2:4 roof over soak pit.

9. List any six different forms of outgoings.
10. Write a short note on calculation of standard rent.

PART-B
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. Calculate the quantities for the following items of work for the building shown in figure below :
(a) Earth work excavation for foundation
(b) RR Masonary in CM 1:6 in basement and footings
(c) CC 1:5:10 for flooring bed, 100 mm thick

12. Prepare the detailed estimate for the following items of work for the building shown in figure below :
(a) $\mathrm{CC}(1: 5: 10)$ bed for foundation
(b) Brick masonry in $\mathrm{CM}(1: 6)$ for superstructure wall without deductions (excluding parapet wall)
(c) Plastering with $\mathrm{CM}(1: 5) 12 \mathrm{~mm}$ thick for inside the building without deductions.

13. Prepare the data sheet and calculate the cost for the following items of work :
(a) RR masonry with $\mathrm{CM}(1: 8)$ unit- $1 \mathrm{~m}^{3}$

$1.05 \mathrm{~m}^{3}$	Rough stone
$0 \cdot 34 \mathrm{~m}^{3}$	CM $(1: 8)$
$1 \cdot 8$ No.	Mason
$2 \cdot 8$ Nos.	Man Mazdoor
LS	Sundries

(b) Pointing of RR masonry in $\mathrm{CM}(1: 5)$ unit- $10 \mathrm{~m}^{2}$

$0.09 \mathrm{~m}^{3}$	CM $(1: 5)$
$2 \cdot 28$ Nos.	Mason
$0 \cdot 50$ Nos.	Man Mazdoor
$1 \cdot 10$ Nos.	Women Mazdoor
LS	Sundries

Lead statement of materials :

Sl.No.	Materials	Rate at sources (in ₹)	Leads (in km)	Conveyance charges $/ \mathrm{km}$
1	Rough stone	$320.00 / \mathrm{m}^{3}$	15 km	$4.00 / \mathrm{m}^{3}$
2	Sand	$95.00 / \mathrm{m}^{3}$	10 km	$3.00 / \mathrm{m}^{3}$
3	Cement	$2500.00 / 10 \mathrm{kN}$ $(1$ tonne)	At site	

Labour charges :

Mason	$₹ 225 \cdot 00 /$ day
Man Mazdoor	$₹ 180 \cdot 00 /$ day
Woman Mazdoor	$₹ 180 \cdot 00 /$ day
Mixing charges for CM	$₹ 40 \cdot 00 / \mathrm{m}^{3}$

14. Prepare the data sheet and calculate the cost of the items given below :
(a) $\mathrm{CC}(1: 5: 10)$ using 40 mm HBG metal-unit $1 \mathrm{cu} . \mathrm{m}$.

$0.92 \mathrm{~m}^{3}$	40 mm HBG metal
-	Sand
0.06 Nos.	Cement
$0 \cdot 14$ Nos.	Mason I class
$1 \cdot 80$ Nos.	Masson II class
$1 \cdot 40$ Nos.	Man Mazdoor
LS	Women Mazdoor

[Contd...
(b) RR Stone masonry in $\mathrm{CM}(1: 6)$ unit- $1 \mathrm{cu} . \mathrm{m}$

1.05 cu.m	Rough stone
0.05 cu.m	Bond stone
0.34 cu.m	CM $(1: 6)$
0.54 Nos.	Mason Ist class
1.26 Nos.	Mason IInd class
1.40 Nos.	Man Mazdoor
1.40 Nos.	Women Mazdoor
LS	Sundries

Rates of labour and materials at site :

HBG 40 mm size	$₹ 440 \cdot 00 / 1 \mathrm{cu} . \mathrm{m}$
Sand	$₹ 200 \cdot 00 / 1 \mathrm{cu} . \mathrm{m}$
Cement	$₹ 3,400 \cdot 00 / 1 \mathrm{cu} . \mathrm{m}$
Rough stone	$₹ 280 \cdot 00 / 1 \mathrm{cu} . \mathrm{m}$
Bond stone	$₹ 700 \cdot 00 / 1 \mathrm{cu} . \mathrm{m}$
Mason 1st class	$₹ 160 \cdot 00 /$ day
Mason 2nd class	$₹ 140 \cdot 00 /$ day
Man Mazdoor	$₹ 110 \cdot 00 /$ day
Women Mazdoor	$₹ 110 \cdot 00 /$ day
Mixing charges for CM	$₹ 20 \cdot 00 / \mathrm{cu} . \mathrm{m}$

15. Reduce levels of ground along the centre line of a proposed road from chainage 0 to 9 are given below. The formation level at ' 0 ' chainage is 10.00 and the road is in downward gradient of 1 in 100. Formation width of road is 10 m and side slopes are $2: 1$. Length of chain is 20 m . The ground is level in the transverse direction. Calculate the quantity of earth work by Trapezoidal rule.

Chainage	0	1	2	3	4	5	6	7	8	9
$R L$ of ground	$8 \cdot 0$	$7 \cdot 8$	$7 \cdot 60$	$7 \cdot 20$	$6 \cdot 80$	$6 \cdot 10$	$6 \cdot 20$	$5 \cdot 90$	$5 \cdot 0$	$4 \cdot 90$

16. Prepare the detailed estimate for the following items of work for a slab culvert shown in figure :
(a) Earth work excavation for foundation for abutments and returns
(b) $\mathrm{CC}(1: 4: 8)$ for abutment and returns
(c) $\operatorname{RCC}(1: 2: 4)$ for deck slab

17. Calculate the following quantities for a septic tank shown in figure :
(a) Cement concrete 1:4:8 for foundation
(b) 2nd class brickwork in $\mathrm{CM}(1: 6)$

18. The total cost of the newly constructed building is $₹ 15$ lacks. Find the depreciation cost of building after 25 years by (a) straight line method and (b) constant percentage method if the scrap value of the building is $₹ 1,20,000$. Assume the life of building as 80 years.
