
co9-c-407

3428

BOARD DIPLOMA EXAMINATION, (C-09)

MARCH/APRIL—2017

DCE-FOURTH SEMESTER EXAMINATION

CIVIL ENGINEERING DRAWING-II
Time : 3 hours]
[Total Marks : 60

PART—A
$4 \times 5=20$
Instructions : (1) Answer all questions.
(2) Each question carries four marks.
(3) Any missing data may be assumed suitably.
(4) This Part need not be drawn to scale.

1. Sketch the cross-section of a pipe culvert with M-15 grade concrete bedding with the following data :

Internal diameter of the pipe $=1.00 \mathrm{~m}$
Thickness of pipe $=0.10 \mathrm{~m}$
No. of pipes = 1
Thickness of concrete bed $=250 \mathrm{~mm}$
Width of concrete bed $=1600 \mathrm{~mm}$
Thickness of concrete benching $=300 \mathrm{~mm}$
[Contd...
2. Draw the cross-section of an abutment of an RCC bridge from the following data :

Abutment
Bottom level of CC foundation bed $=+79 \cdot 60$
Top level of CC foundation bed $=+80 \cdot 10$
Bed level $=+81.00$
Bottom level of RCC slab $=83.75$
Width of bed block $=600 \mathrm{~mm}$
Thickness of bed block $=250 \mathrm{~mm}$
Bottom width of abutment $=900 \mathrm{~mm}$
(same width up to bed level)
Top width of abutment $=600 \mathrm{~mm}$ at bed lock level
with water face vertical
3. Draw the plan of septic tank from the given specifications :

Internal dimensions $=2750 \mathrm{~mm} \times 900 \mathrm{~mm} \times 1300 \mathrm{~mm}$
Brick masonry wall thickness $=230 \mathrm{~mm}$ CC offset for masonry walls $=300 \mathrm{~mm}$
4. Draw the cross-section of a weir with stepped aprons.
5. Sketch the barrel of a tower head sluice from the following data:

Vent way $=0.90 \mathrm{~m}$ wide $\times 0.75 \mathrm{~m}$ deep
Width of barrel side wall $=0.5 \mathrm{~mm}$ at top and 0.75 m at bottom
CC foundation $=0.45 \mathrm{~m}$ thick with 0.3 m offset
RCC slab over barrel $=150 \mathrm{~mm}$ thick
[Contd...

Instructions : (1) Answer all questions.
(2) Any missing data may be assumed suitably.
6. Draw the following views of an RCC slab culvert to a scale of $1: 50$ with the given specifications :
(a) Half plan at bottom and half plan at top
(b) Sectional elevation

Specifications :
Foundations
Foundations for abutments and wing walls are taken to same level.
Bottom level of leveling coarse (CC) $=+49 \cdot 80$
Top level of leveling coarse $=+51 \cdot 10$
Width of leveling coarse $=1.5 \mathrm{~m}$
Thickness of CC foundation bed $=0.5 \mathrm{~m}$
Width of CC foundation bed $=1.5 \mathrm{~m}$
Top level of CC foundation bed = bottom level of abutment and wind wall $=+51.60$
Bottom width of abutment $=$ bottom width of wing wall $=0.9 \mathrm{~m}$
Bed level $=+52 \cdot 60$
Superstructure
Profile of abutments and wing walls = width of abutments wing walls is 0.9 m up to bed level. From bed level, water face is kept vertical and the rear (earth retaining side) side has a batter such that the width is equal to 0.6 m (at bed block level)
Thickness of the bed block $=250 \mathrm{~mm}$
Width of bed block $=600 \mathrm{~mm}$
Bottom level of RCC slab $=+54 \cdot 20$
Thickness of slab $=200 \mathrm{~mm}$
Thickness of wearing coat $=100 \mathrm{~mm}$
Top level of wearing coat $=+54.50$
Kerb width $=200 \mathrm{~mm}$
Top level of kerb $=+54.75$
Thickness of parapet wall $=400 \mathrm{~mm}$
Top level of parapet $=+55 \cdot 25$
Length of abutments $=8.6 \mathrm{~m}$
Width of roadway $=7.4 \mathrm{~m}$
Length of wing wall $=2.8 \mathrm{~m}$
[Contd...

Vent way and other protection works
Width of vent way $=2.0 \mathrm{~m}$
Height of vent way $=1.6 \mathrm{~m}$
Bed pitching $=200 \mathrm{~mm}$ rough stone boulders are provided as bed pitching in the vent way
Cut-off walls = cut-off walls 200 mm thick are provided at the ends of vent way
Top level of cut-off wall $=\mathrm{BL}=+52 \cdot 60$
Bottom level of cut-off wall $=+52 \cdot 00$
CC bed for cut-off wall $=$ foundation for cut-off walls consists CC bed 800 mm wide and 300 mm depth
Side slope revetment
The sides of the stream are provided with 200 mm size rough stone boulders at a slope of 1:1 from bed level to formation level
7. Draw to a scale of $1: 100$, the cross-section of non-homogeneous earthen bund from the following specifications :
Specifications
TBL $=+45 \cdot 7$
MWL $=+44.50$
$\mathrm{FTL}=+43 \cdot 60$
Top width of bund $=3.0 \mathrm{~m}$
General ground level at site $=+33.60$
Stripped ground level $=33 \cdot 10$
Slope on water face $=2$ in 1
Slope on rare face $=2.5$ in 1
A berm of 1.8 m wide shall be provided at +38.20 on rare side
Hearting zone
Top width $=1.8 \mathrm{~m}$ at MWL
Side slopes $=1: 1$
Sand chimney to a thickness of 1.0 m shall be provided on the rear face of hearting zone

Casing

Casing to a thickness of 900 mm is provided over longitudinal filter with its top at $+35 \cdot 10$

Cut-off trench

Bottom width $=3 \mathrm{~m}$
Side slopes = 1:1 and taken to a level of $+28 \cdot 60$

Revetment

Revetment on water face consists of 450 mm size rough stone boulders layed over 150 mm thick gravel backing and is founded on rock wall 1.0 m wide and 1.2 m deep

Rock toe

Top width $=1.5 \mathrm{~m}$ at +35.60
Side slopes = 1:1 and consists of rough stone boulders of size varying from 150 mm to 300 mm

Toe drain

1.0 m bed width with $1: 1$ side slopes. The bed level is at $+32 \cdot 60$, bed pitching and side revetment consisting of 300 mm rough stone

Longitudinal filter

Consists of rough stone of size varying from 150 mm to 250 mm to a depth of 750 mm . Fine and coarse sand layers of 150 mm thick and 200 mm thick are provided on both bottom and top of longitudinal filter. These sand layers shall be layed below stripped level at $+32 \cdot 75$, on which rough stones are arranged to form the filter media, arranged between sand layers. Bottom width $=2.50 \mathrm{~m}$. Same arrangement shall be provided for cross-filter and extended into the rock toe.

