3428

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL-2021

DCE - FOURTH SEMESTER EXAMINATION
CIVIL ENGINEERING DRAWING - II
Time : 3 hours]
[Total Marks : 60
PART-A
$5 \times 4=20$

Instructions: (1) Answer any four questions.
(2) Each question carries five marks.
(3) Part-A need not be drawn to be scale.
(4) Any missing data may be assumed suitably.

1. Sketch the section of head wall of pipe culvert with the following data Bottom level of head wall $=+49.00$

Bottom width of head wall $=1200 \mathrm{~mm}$
Top level of CC bed provided under head wall $=+49.00$
Bottom level of CC bed provided under head wall $=+48.00$
Width of CC bed $=1800 \mathrm{~mm}$
Profile of head wall = Outer surface vertical and earth Fill face having a batter so that the top width $=450 \mathrm{~mm}$ Top level of head wall $=+52 \cdot 00$.
2. Draw the cross-section of a weir with stepped aprons.
3. Draw the plan of two span (each 3.0 m) RCC-T beam bridge with straight returns and label the components.
4. Draw the plan of an overhead tank from the given specifications :

Size of tank $=5 \mathrm{~m} \times 5 \mathrm{~m} \times 1.75 \mathrm{~m}$
Thickness of RCC side wall $=200 \mathrm{~mm}$
Size of RCC column $=400 \mathrm{~mm} \times 400 \mathrm{~mm}$
Size of footing at base $=1.6 \times 1.6 \mathrm{~m}$
5. Half plan at top of a surplus weir as shown below in fig . name any five parts numbered from 1 to 6 .

6. A tank bund has a top width of 2.5 m ; T.B. $\mathrm{L}=+58.00$, G. $\mathrm{L}=+48.50$; Side slopes $=2: 1$ on either side. If the hearting zone is 1.00 m , above F.T.L $=+56.00$. with its top width 1.6 m and side slopes $1: 1$ sketch the cross-section of the bund.
7. Draw the cross section of an empty soak pit with the following specifications : Diameter (internal) $=900 \mathrm{~mm}$ Circular lining $=230$ mm thick brick lining with dry joints, Total depth of pit $=1.70 \mathrm{~m}$ General ground level $=450 \mathrm{~mm}$ below roof slab, Roof covering with removable precast concrete slabs 70 mm thick.

PART—B
$25+15=40$

Instructions : (1) Answer all questions.
(2) Any missing data may be assumed suitably.
(3) Part-B needs to be drawn to the given scale.
8. Draw the following views of a septic tank to a scale of $1: 20$ from the given specifications:
(a) Plan
(b) Longitudinal section

Specifications:

Internal dimensions $=900 \times 2750 \mathrm{~mm}$
Brick masonry wall thickness $=230 \mathrm{~mm}$
Thickness of cc bed $=500 \mathrm{~mm}$
CC Offset for masonry walls $=300 \mathrm{~mm}$
Depth of water $=1000 \mathrm{~mm}$
Free board $=300 \mathrm{~mm}$
Thickness of RCC roof panels $=100 \mathrm{~mm}$ and width 450 mm fitted with bent handles for lifting.

Scum board $=$ RCC precast slab 75 mm thick fixed at a height of 300 mm from floor level and extending up to a height 150 mm below roof. This shall be fixed at a distance of 900 mm from inside of wall at inflow and into a grove 75 mm deep.

Standing baffle $=$ RCC precast slab 75 mm thick kept of floor at a distance of 600 mm from inside of wall at outflow end. The top of baffle shall be 150 mm below water level.

Inflow and out let pipes $=100 \mathrm{~mm}$ dia. T-shaped pipes
Vent pipe $=50 \mathrm{~mm}$ dia. AC pipe with cowl extending to a height of 2.0 m above G.L

Masonry pedestal $=450 \mathrm{~mm}$ dia. Circular brick masonry pedestal shall be provided around the vent pipe up to G.L

General ground level = 300 mm above top of RCC precast roof panels.

OR

9. Draw the sectional elevation of a square RCC overhead tank with the following data to a scale of $1: 50$:

Height of the tank (from Gl to bottom of the tank, i.e., top of floor slab or base slab) $=9 \mathrm{~m}$

Size of tank $=4.5 \mathrm{~m} \times 4.5 \mathrm{~m} \times 1.5 \mathrm{~m}$
Thickness of RCC side walls $=200 \mathrm{~mm}$
Thickness of RCC base slab $=200 \mathrm{~mm}$

Thickness of RCC roof slab $=120 \mathrm{~mm}$
Size of RCC column $=400 \mathrm{~mm} \times 400 \mathrm{~mm}$
No. of RCC columns $=4$ Nos (one at each corner)
Size of RCC brace beams $=400 \mathrm{~mm} \times 350 \mathrm{~mm}$
Spacing of brace Deams $=3.0 \mathrm{~m} / \mathrm{cc}$
Depth of RCC footing below ground level $=2 \mathrm{~m}$
Size of footing at base $=1.6 \mathrm{~m} \times 1.6 \mathrm{~m}$
Thickness of footing at column face $=500 \mathrm{~mm}$
Thickness of footing at the end $=200 \mathrm{~mm}$
Thickness of levelling course below the footing $=200 \mathrm{~mm}(1: 4: 8)$
plain concrete Size of ring beam below base slab $=400 \mathrm{~mm} \times 450 \mathrm{~mm}$
Dia. of inflow pipe $=100 \mathrm{~mm}$ Dia. of outflow pipe $=75 \mathrm{~mm}$
Dia. of scour pipe $=75 \mathrm{~mm}$ Size of manhoie cover $=600 \mathrm{~mm} \times 450 \mathrm{~mm}$
Show the pipe connections, ladder and ventilating arrangements.
10. Draw the longitudinal section of a canal drop and name the component Parts (need not be drawn to scale)

OR

11. Sketch the cross section of a homogeneous earthen bund and name the Component parts. (need not be drawn to scale)

