3428

BOARD DIPLOMA EXAMINATION, (C-09)
JUNE—2019
DCE-FOURTH SEMESTER EXAMINATION
CIVIL ENGINEERING DRAWING-II
[Total Marks : 60
Time : 3 hours]

PART—A
$4 \times 5=20$

Instructions : (1) Answer all questions.
(2) Each question carries four marks.
(3) Any missing data may be assumed suitably.
(4) Part-A need not be drawn to a scale.

1. Draw the plan of a square RCC overhead tank with the following data:

Size of tank $=4.0 \mathrm{~m} \times 4.0 \mathrm{~m} \times 2.0 \mathrm{~m}$
Thickness of RCC side walls $=200 \mathrm{~mm}$
Thickness of RCC base/floor slab $=200 \mathrm{~mm}$
Thickness of RCC roof slab $=110 \mathrm{~mm}$
Size of RCC column $=400 \mathrm{~mm} \times 400 \mathrm{~mm}$
No. of RCC column $=4$ No. (one at each corner)
Size of RCC brace beams $=400 \mathrm{~mm} \times 350 \mathrm{~mm}$
Size of ring beam $=400 \mathrm{~mm} \times 400 \mathrm{~mm}$
Size of footing at base $=1.6 \mathrm{~m} \times 1.6 \mathrm{~m}$
2. Sketch the cross-section of T-beam bridge of two spans showing CC bed, pier, T-beam, deck slab and wearing coat.
3. Draw the half bottom plan of slab culvert showing abutment, splayed wing wall with straight returns.
4. Sketch the cross-section of the tank bund which has top width 2.5 m , $\mathrm{TBL}=+58.00$ and bottom level of bund i.e. stripped level $=+48.00$; $\mathrm{GL}=+48.50$; side slopes $=2: 1$ on either side .
5. Name the parts numbered 1 to 4 of the tank sluice whose plan is shown below :

PART—B
Instructions: (1) Answer all questions to a scale.
(2) Any missing data may be assumed suitably.
6. The following are the particulars for a pipe culvert. Read the particulars along with the specifications and draw the longitudinal section along pipe to a convenient scale :
(i) Drain particulars :

Bed level $=+51 \cdot 350$
Bed width near the pipe culvert $=1200 \mathrm{~mm}$
Side slopes of drain $=1: 1$
General GL near the drain $=+52.550$
(ii) Pipe details :

Internal dia. of CC pipe $=1000 \mathrm{~mm}$
External diameter $=1200 \mathrm{~mm}$
Bedding for the pipe $=250 \mathrm{~mm} \mathrm{CC}$
Benching for the pipe $=300 \mathrm{~mm} \mathrm{CC}$
Width of both bedding and benching $=1800 \mathrm{~mm}$
Bottom level of CC bedding $=+51.00$
No. of pipes = One
(iii) Head walls :

Length of head wall $=7200 \mathrm{~m}$
Bottom level of head wall $=+50 \cdot 10$
Level of CC bed provided under head walls $=+50 \cdot 10$
Bottom level of CC bed provided under head walls $=+49 \cdot 80$
Width of CC bed $=1800 \mathrm{~mm}$
Bottom width of head wall $=1200 \mathrm{~mm}$
Profile of head wall = Outer surface vertical and earth fill face having a batter so that the top width = 450 mm ; top level of head wall $=+53.00$
(iv) Earth fill and embankment :

Formation width $=10000 \mathrm{~mm}$
Side slopes $=2$ horizontal to 1 vertical
Formation level $=+55.00$
(v) Bed pitching:

200 mm rough stone bed pitching to a length of 1200 mm on both U / S and D / S. A toe wall of same width to be taken to a level of +51.00 at the end of bed pitching.
(vi) Side slope rivetment :

200 mm rough stone revetment along slopes to a length of 1200 mm on both U/S and D/S from bed level to general ground level.
(vii) Guide stones on both the sides of formation :
$450 \mathrm{~mm} \times 450 \mathrm{~mm}$ square guide stones are provided at a distance of 450 mm from extreme edges of formation. these stones are taken to a depth of 600 mm below formation level and extend to a height of 700 mm above formation level at $3000 \mathrm{~mm} \mathrm{C} / \mathrm{C}$.
7. Draw the longitudinal section of a canal drop to a scale of $1: 50$ from the following specifications :
(i) Canal particulars

U / S	D / S
+121.600	+121.600
+121.000	+119.600
+121.500	+120.100
+122.100	+122.100
1.60 m	1.30 m
1.00 m	1.00 m
$1: 1$	$1: 1$
+121.600	+121.600

Slopes in embankment :

Water face	$1.5: 1$	$1.5: 1$
Rear face to connect GL	$2: 1$	$2: 1$

(ii) Body wall :

Top level $=+121.000$
Bottom level $=\mathrm{CC}$ foundation top level $=119.600$
CC foundation level $=+118.850$
Top width $=600 \mathrm{~mm}$
Bottom width $=120 \mathrm{~mm}$ with U / S face vertical
Length $=8.5 \mathrm{~m}$
Width of CC foundation $=1.8 \mathrm{~m}$ with equal offset
(iii) Notch wall or notch pier :

Thickness of notch wall $=450 \mathrm{~mm}$
Top level of notch wall $=\mathrm{CBL}=+122 \cdot 100$
No. of notches $=1$ no.
Shape $=$ Rectangle
Sill level of notch = U/S bed level
Width of notch $=1.0 \mathrm{~m}$
(iv) CC apron on D / S of drop :

CC apron shall be provided in continuation with CC bed under body wall with same thickness. Length of CC apron from the edge of CC bed under body wall is 2.75 m . Top level of CC apron $=+119 \cdot 600$, bottom level of CC apron $=+118 \cdot 850$.
(v) Rough stone bed pitching :

On U/S : Bed pitching consists of 300 mm size stone boulders to a length of 1.5 m including toe.
On D/S : Bed pitching consists of 300 mm size stone boulders to a length of 3.5 m including toe.
(vi) Revetment to canal slopes:

U/S : Revetment is provided to the sides of canal from bed level to FSL to a length of 2.8 m . A slope of $1: 1$ is given at the end of revetment to connect the revetment with bed level.

D/S : Revetment starts from canal bund level at the notch wall and is taken to a level of +121.500 (FSL on U/S) at the end of CC apron in an inclined direction. From the end of CC apron, revetment is continued at the same level $(+121.500)$ upto the end of rough stone bed pitching and vertically dropped to the level of $+120 \cdot 50$. From this point revetment is continued at the same level for a distance of 3.0 m . Rough stone boulders of size 300 mm are used for revetment to canal slopes.

