co9-c-407

3428

BOARD DIPLOMA EXAMINATION, (C-09) OCT/NOV—2017
 DCE-FOURTH SEMESTER EXAMINATION

CIVIL ENGINEERING DRAWING-II
Time : 3 hours] [Total Marks : 60

PART—A
$4 \times 5=20$
Instructions : (1) Answer all questions.
(2) Each question carries four marks.
(3) Any missing data may be assumed suitably.
(4) This Part need not be drawn to scale.

1. Sketch the cross-section of pipe along with bedding and benching of a pipe culvert with the following data :

Internal diameter of CC pipe $=1.2 \mathrm{~m}$
Thickness of pipe $=0.1 \mathrm{~m}$
No. of pipes $=1$
Thickness of bedding for the pipe $=250 \mathrm{~mm} \mathrm{CC}$
Width of concrete bed $=2000 \mathrm{~mm}$
Thickness of concrete benching $=350 \mathrm{~mm}$
[Contd...
2. Draw the cross-section of abutment of an RCC bridge from the following data :

Bottom level of CC foundation bed $=+49 \cdot 30$
Top level of CC foundation bed $=+49 \cdot 70$
Bed level of canal $=+50 \cdot 00$
Bottom level of RCC slab $=+53.00$
Width of bed block $=600 \mathrm{~mm}$
Thickness of bed block $=150 \mathrm{~mm}$
Bottom width of abutment $=1300 \mathrm{~mm}$ (same width up to BL)
Top width of abutment $=600 \mathrm{~mm}$ at bed block level with water face vertical

Width of CC bed $=1700 \mathrm{~mm}$
3. Draw the cross-section across a bowl-type urinal fitted to wall 230 mm wide and $2 \cdot 10 \mathrm{~m}$ high. Assume standard size for bowl of urinal is at a height of 610 mm from floor level. At bottom of the urinal outlet horn is provided for connecting the urinal to the soil pipe through a floor trap. Urinals shall be flushed with hand operated cistern.
4. The longitudinal section of canal drop is shown in figure below. Name the parts numbered from 1 to 4 :

5. Draw the cross-section of a homogeneous earthen bund with the following specifications :

Top width of bund $=1.5 \mathrm{~m}$
TBL $=+57 \cdot 00$
General ground level $=+50 \cdot 00$
Stripped ground level $=+49 \cdot 70$
Side slopes $=1 \frac{1}{2}: 1$ on U / S and $2: 1$ on D / S
Key trenches $=1.2 \mathrm{~m}$ wide and 0.6 m deep at $4.0 \mathrm{~m} \mathrm{C} / \mathrm{C}$ Protection of upstream face of bund $=300 \mathrm{~mm}$ rough stone revetment is provided on upstream face over gravel backing of 150 mm thick, stone revetment supported on 1.0 m wide and 1.0 m deep.

PART—B
Instructions : (1) Answer all questions.
(2) Any missing data may be assumed suitably.
(3) This Part need not be drawn to given scale.
6. Draw the sectional elevation of a square RCC overhead tank to a scale of 1:50 with the following specifications :

Height of the tank $=9.00 \mathrm{~m}$
(From GL to bottom of the tank, i.e., top of floor slab)
Size of tank $=5.00 \mathrm{~m} \times 5.00 \mathrm{~m} \times 1.75 \mathrm{~m}$
Thickness of RCC sidewalls $=200 \mathrm{~mm}$
Thickness of RCC base/floor slab $=200 \mathrm{~mm}$
Thickness of RCC roof slab $=110 \mathrm{~mm}$
Size of RCC column $=400 \mathrm{~mm} \times 400 \mathrm{~mm}$
No. of RCC column $=4$ numbers (one at each corner)
Size of RCC brace beams $=400 \mathrm{~mm} \times 350 \mathrm{~mm}$
Spacing of brace beams $=3.00 \mathrm{~m} \mathrm{C} / \mathrm{C}$
Depth of RCC footing below GL $=2.00 \mathrm{~m}$
[Contd...
www. ManaResults.co.in

Size of footing at base $=1.60 \mathrm{~m} \times 1.60 \mathrm{~m}$
Thickness of footing at column face $=500 \mathrm{~mm}$
Thickness of footing at the end $=200 \mathrm{~mm}$
Thickness of levelling course below footing $=200 \mathrm{~mm}(1: 4: 8)$
plain concrete
Size of ring beam below base slab $=400 \mathrm{~mm} \times 450 \mathrm{~mm}$
Diameter of inflow pipe $=100 \mathrm{~mm}$
Diameter of outflow pipe $=75 \mathrm{~mm}$
Size of manhole cover $=600 \mathrm{~mm} \times 450 \mathrm{~mm}$
Show the pipe connections, ladder, water level indicator, ventilating arrangements, etc.
7. Draw the half-plan at foundation and half-plan at top of a surplus weir to a scale of $1: 50$ with the following specifications :
(a) Hydraulic particulars :

TBL $=+56 \cdot 20$
Width of tank bund $=1.20 \mathrm{~m}$
MWL $=+54 \cdot 20$
$\mathrm{FTL}=+53 \cdot 50$
GL on U / S of weir $=+53 \cdot 00$ (in the tank)
GL on D/S of weir $=+52 \cdot 50$
Side slopes of tank bund $=2: 1$ on both U / S and D/S
(b) Weir/body wall :

Length in between abutments $=40 \mathrm{~m}$
Width at bottom $=1.20 \mathrm{~m}$
Width at top $=0.60 \mathrm{~m}$ with equal batter on both the sides
Width of CC bed $=1.80 \mathrm{~m}$ with equal offset on either side
CC foundation for abutments, wing walls and returns both on U / S and D / S shall be provided at the same level at that of CC foundation for weir wall.

4 www. ManaResults.co.in
[Contd...
(c) Abutments :

Width at bottom $=1.80 \mathrm{~m}$
Width at top $=0.6 \mathrm{~m}$
Water face vertical and battered on earthen side
Length of abutment $=$ width of tank bund $=1.20 \mathrm{~m}$
Concrete offset $=300 \mathrm{~mm}$
(d) Wing walls : Upstream side :

Projected length $=4.0 \mathrm{~m}$ from bottom weir wall
Splay $=1$ in 5
Width at bottom $=1.8 \mathrm{~m}$ at the junction with the abutment and rear face of wing wall gradually narrows so that the width at bottom is 0.9 m at the junction with return walls
Top width $=60 \mathrm{~mm}$ with water face vertical and battered on earthen side

Downstream side :
Projected length $=5.0 \mathrm{~m}$ from bottom weir wall
Splay $=1$ in 4
Width at bottom $=1.8 \mathrm{~m}$ and the rear side is parallel to front side. Thickness of bottom is uniform throughout the wing and return on D / S

Width at top $=600 \mathrm{~mm}$ with water face vertical and battered on earthen side

Foundation offset $=300 \mathrm{~mm}$
(e) Return walls :

Upstream side :
Length $=3 \cdot 20 \mathrm{~m}$ as measured on the outer face of the walls
Top level $=+54 \cdot 00$
Width at bottom $=900 \mathrm{~mm}$
Width at top $=600 \mathrm{~mm}$ with water face vertical and battered on earthen side
www. ManaResults.co.in
[Contd...

Downstream side :
Length $=3.20 \mathrm{~m}$ as measured on the outer face of the wall
Top level $=+54 \cdot 00$
Width at bottom $=1.80 \mathrm{~m}$
Width at top $=600 \mathrm{~mm}$ with water face vertical and battered on earthen side

Foundation offset $=300 \mathrm{~mm}$
Horizontal stone masonry apron with 300 mm size boulders is provided on the D / S over the length of wing wall.

