

3728
 BOARD DIPLOMA EXAMINATION, (C-09)
 MARCH/APRIL-2016
 DCE-SIXTH SEMESTER EXAMINATION

STRUCTURAL ENGINEERING DRAWING
Time : 3 hours]
Total Marks : 60
PART—A
$4 \times 5=20$
Instructions : (1) Answer all questions.
(2) Each question carries four marks.
(3) Part-A may be drawn not to scale.
(4) Assume suitable data, if necessary.
(5) For all main reinforcement, use HYSD bars.

1. Write any two points where columns and beams are placed in a framed structure with sketch.
2. Mark the position of columns in the given diagram and name them as per 'Grid Reference Scheme' :

3. Draw the cross section of an isolated column footing showing reinforcement details of column and footing with the following specifications :
Column :
Size of column-300 mm $\times 300 \mathrm{~mm}$
Reinforcement- 4 nos of 16 mm dia. with lateral ties 6 mm dia@ 220 mm c/c
Footing :
Size of footing- $1200 \mathrm{~mm} \times 1200 \mathrm{~mm}$
Reinforcement- 10 mm dia. bars @ 100 mm c/c both ways
Depth-220 mm uniform
[Contd...
4. Prepare a bar bending schedule for the one-way slab shown below :

Thickness of slab $=100 \mathrm{~mm}$
All the covers $=20 \mathrm{~mm}$
5. Prepare a bar bending schedule for the simply supported RC beam, with the following data :

Clear span-3200 mm
Size of the beam-230 mm $\times 350 \mathrm{~mm}$
Wall thickness- 230 mm
Main reinforcement-4 nos. of 12 mm dia. (all straight bars)
Hanger bars- 2 nos. of 10 mm dia.
Stirrups-6 mm dia. 2-legged bars at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
All covers are of 25 mm

PART-B
$20 \times 2=40$
Instructions : (1) Answer all questions.
(2) Each question carries twenty marks.
(3) Draw all questions to scale.
(4) Assume suitable missing data.
6. A two-way slab whose corners are not held down is laid over a room of size $3.0 \mathrm{~m} \times 5.0 \mathrm{~m}$:
Specifications :
Width of wall-230 mm
Bearing on walls- 230 mm
Overall depth of slab- 150 mm
[Contd...

Main reinforcement :
Along short span—12 mm dia. @ $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ (alternate bars are cranked at a distance of 300 mm from face of the support)
Along long span-10 mm dia. @ $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ (alternate bars are cranked at a distance of 500 mm from face of the support)
Draw to a scale of $1: 50$:
(a) Bottom plan of reinforcement 15
(b) Cross section along long span
7. Draw the longitudinal section and plan of staircase spanning longitudinally with the following specifications:

Size of the staircase room- $4700 \mathrm{~mm} \times 2000 \mathrm{~mm}$ (inside)
Level difference between floors- 3000 mm
Width of the stair- 1000 mm
Landing length— 1000 mm
Tread-270 mm and Rise-150 mm
Thickness of waist slab- 150 mm
Bearing on wall- 230 mm (full)
Size of projection into basement- $300 \mathrm{~mm} \times 300 \mathrm{~mm}$
Reinforcement details :
(i) Main reinforcement-12 mm dia at $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
(ii) Distribution steel-10 mm dia at $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
(iii) Additional bars- 12 mm bars at $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
(at junction of landing slab with waist slab)
Bottom and end clear covers to steel- 25 mm
Draw the following to a scale of $1: 25$:
(a) Longitudinal section one flight 15
(b) Plan of the staircase room

