3728
 BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL-2021
 DCE - SIXTH SEMESTER EXAMINATION
 STRUCTURAL ENGINEERING DRAWING

Time : 3 hours]
[Total Marks : 60

PART—A

$4 \times 5=20$
Instructions: (1) Answer any four questions.
(2) Each question carries five marks.
(3) Need not be drawn to scale.
(4) Assume any suitable data if necessary.

1. Re-draw the plan and mark the position of beams with reference to any scheme.

Room	Room
4000×3600	2000×3600

2. Re-draw the figure and name the columns.

3. Draw the cross-section of a singly reinforced beam for the specifications given below :

Size of the beam $=300 \mathrm{~mm} \times 450 \mathrm{~mm}$
Main reinforcement $=4$ no's of 16 mm dia (All straight bars)
Hanger bars $=2$ no's of 12 mm dia
Stirrups $=8 \mathrm{~mm}$ dia 2-legged stirrups at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
4. Obtain the reinforcement details for one-way slab shown in the figure :
(a) Diameter of main bar
(b) Draw the shape of main bar
(c) Spacing of distribution bars
(d) Depth of slab
(e) Shorter span length
5. Determine the length of distribution bar for the same above figure i.e., one-way slab.

PART—B

$20 \times 2=40$

Instructions : (1) Answer all questions by following INTERNAL CHOICE.
(2) Each question carries twenty marks.
(3) Any missing data may be assumed suitably.
6. Draw the reinforcement details of any one structural component in civil engineering structures.

OR

Draw the cross-section of lintel with sunshade to a suitable scale for the following specifications :
Width of wall $=230 \mathrm{~mm}$
Size of lintel $=230 \mathrm{~mm} \times 200 \mathrm{~mm}$
Projection of sunshade from face of the wall $=500 \mathrm{~mm}$
Thickness of sunshade $=100 \mathrm{~mm}$ at both fixed and free ends

Reinforcement of lintel :

Main reinforcement $=3$ no's of 12 mm dia
Hanger bars $=2$ no's of 10 mm dia
Stirrups $=8 \mathrm{~mm}$ dia 2-legged at $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Reinforcement of sunshade :

Main bars at top $=10 \mathrm{~mm}$ dia bars at $180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Distribution steel $=8 \mathrm{~mm}$ dia at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
7. Draw the longitudinal cross section of an isolated square footing to a suitable scale for a column with the following specifications :

Size of the column $=300 \times 300 \mathrm{~mm}$
Size of the footing $=1800 \times 1800 \mathrm{~mm}$.
Thickness of footing $=400 \mathrm{~mm}$
Base coarse thickness $=150 \mathrm{~mm}$ with PCC $1: 2: 4$
Reinforcement for footing $=12 \mathrm{~mm}$ dia at $180 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in both the directions
The horizontal lap length of the column reinforcing bar is 400 mm each.

Reinforcement for column :

Main bars : 16 mm dia bars, 4 no's
Lateral ties $=8 \mathrm{~mm}$ dia ties at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
All covers $=50 \mathrm{~mm}$

OR

For the same specifications of isolated square footing above draw the cross-section of column to a suitable scale.

