3237

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL-2017 DECE-THIRD SEMESTER EXAMINATION

DIGITAL ELECTRONICS

Time : 3 hours]
Total Marks : 80

PART—A
$3 \times 10=30$
Instructions : (1) Answer all questions.
(2) Each question carries three marks.
(3) Answers should be brief and straight to the point and shall not exceed five simple sentences.

1. Convert the following binary numbers into decimal numbers :
(a) 1101_{2}
(b) $1011 \cdot 11_{2}$
(c) 1111_{2}
2. Express the decimal 5280 in Excess-3 code.
3. List three digital logic families.
4. Realize half-adder circuit using NAND gates only.
5. State the need for a tri-state buffer.
6. List the types of register.
[Contd...
7. Draw a level clocked T flip-flop.
8. What is the need of preset and clear inputs in flip-flops?
9. Define the terms resolution and accuracy of D / A converter.
10. Compare static RAM with dynamic RAM.

PART—B
$10 \times 5=50$
Instructions : (1) Answer any five questions.
(2) Each question carries ten marks.
(3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
11. (a) State any five Boolean postulates.
(b) Draw the logic circuits for the realization of AND, OR and NOT operations using NOR gates only.
12. (a) Write Boolean expression of product of maxterms from the following truth table :

Inputs			Output
A	B	C	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

(b) Use Karnaugh map to simplify the following Boolean expression :

$$
Y=\bar{A} \bar{B}+A \bar{B}+A B
$$

[Contd...
13. Draw and explain the logic circuit of 4 to 1 multiplexer.
14. Draw a 2's compliment parallel adder/subtractor circuit and explain its working.
15. Draw and explain the working of ring counter.
16. (a) Draw and explain the operation of NOR latch. 5
(b) What is the necessity of clock in flip-flop? List the types of triggering.
17. (a) Write a short note on memory modules used in computers. 5
(b) Distinguish between EEPROM and UMPROM. 5
18. Explain D/A conversion using R-2R ladder network with a circuit diagram.

